我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。


当前回答

HSV的“V”可能就是你要找的。MATLAB有一个rgb2hsv函数,之前引用的维基百科文章充满了伪代码。如果RGB2HSV转换不可行,则较不准确的模型将是图像的灰度版本。

其他回答

我已经在接受的答案中对三种算法做了比较。我循环生成颜色,大约每400个颜色使用一次。每种颜色由2x2像素表示,颜色从最深到最浅(从左到右,从上到下)排序。

第一张图片-亮度(相对)

0.2126 * R + 0.7152 * G + 0.0722 * B

第二张图片- http://www.w3.org/TR/AERT#color-contrast

0.299 * R + 0.587 * G + 0.114 * B

第三张图片- HSP颜色模型

sqrt(0.299 * R^2 + 0.587 * G^2 + 0.114 * B^2)

第4张图- WCAG 2.0 SC 1.4.3相对亮度和对比度公式(见@Synchro的答案在这里)

根据一行中的颜色数量,有时可以在第一张和第二张图片上发现图案。我从第3或第4算法的图片上没有发现任何模式。

如果我必须选择,我会选择算法3,因为它更容易实现,比4快33%。

为了用R确定颜色的亮度,我将RGB系统颜色转换为HSV系统颜色。

在我的脚本中,我之前因为其他原因使用了HEX系统代码,但你也可以从rgb2hsv {grDevices}的RGB系统代码开始。文档在这里。

这是我的代码的这一部分:

 sample <- c("#010101", "#303030", "#A6A4A4", "#020202", "#010100")
 hsvc <-rgb2hsv(col2rgb(sample)) # convert HEX to HSV
 value <- as.data.frame(hsvc) # create data.frame
 value <- value[3,] # extract the information of brightness
 order(value) # ordrer the color by brightness

正如@Nils Pipenbrinck所提到的:

所有这些方程在实践中都很有效,但如果你需要非常精确,你就必须[做一些额外的gamma东西]。在深灰色中,忽略伽玛和正确伽玛之间的亮度差异高达20%。

这里有一个完全自包含的JavaScript函数,它做了“额外的”工作来获得额外的准确性。它基于Jive Dadson对这个问题的c++回答。

// Returns greyscale "brightness" (0-1) of the given 0-255 RGB values
// Based on this C++ implementation: https://stackoverflow.com/a/13558570/11950764
function rgbBrightness(r, g, b) {
  let v = 0;
  v += 0.212655 * ((r/255) <= 0.04045 ? (r/255)/12.92 : Math.pow(((r/255)+0.055)/1.055, 2.4));
  v += 0.715158 * ((g/255) <= 0.04045 ? (g/255)/12.92 : Math.pow(((g/255)+0.055)/1.055, 2.4));
  v += 0.072187 * ((b/255) <= 0.04045 ? (b/255)/12.92 : Math.pow(((b/255)+0.055)/1.055, 2.4));
  return v <= 0.0031308 ? v*12.92 : 1.055 * Math.pow(v,1.0/2.4) - 0.055;
}

请参阅Myndex的答案以获得更准确的计算。

“接受”的答案是不正确和不完整的

唯一准确的答案是@ ji- dadson和@EddingtonsMonkey的答案,并支持@ niles -pipenbrinck。其他答案(包括已接受的答案)链接到或引用了错误的、不相关的、过时的或坏的来源。

简要:

sRGB必须在应用系数之前线性化。 亮度(L或Y)与光一样是线性的。 感知亮度(L*)与人类感知一样是非线性的。 HSV和HSL在感知方面甚至远不准确。 sRGB的IEC标准指定阈值为0.04045,而不是0.03928(这是来自过时的早期草案)。 为了有用(即相对于感知),欧几里得距离需要一个感知一致的笛卡尔向量空间,如CIELAB。sRGB不是其中之一。


以下是正确而完整的回答:

由于这条线索在搜索引擎中出现频率很高,我添加了这个答案来澄清关于这个主题的各种误解。

亮度是光的线性测量,对正常视力进行光谱加权,但对亮度的非线性感知不进行调整。它可以是相对度量,如CIEXYZ中的Y,或L, cd/m2的绝对度量(不要与L*混淆)。

一些视觉模型如CIELAB使用感知明度,这里L* (Lstar)为感知明度值,且为非线性,以近似人类视觉非线性响应曲线。(也就是说,对知觉是线性的,但因此对光是非线性的)。

亮度是一种感知属性,它不具有“物理”度量。然而,一些颜色外观模型确实有一个值,通常用“Q”表示感知亮度,这与感知亮度不同。

Luma (Y´')是一种伽玛编码的加权信号,用于某些视频编码(Y´I´Q´)。不要与线性亮度混淆。

Gamma或传递曲线(TRC)是一种通常与感知曲线相似的曲线,通常用于存储或广播图像数据,以减少感知噪声和/或提高数据利用率(以及相关原因)。

为了确定感知亮度,首先将gamma编码的R´G´B´图像值转换为线性亮度(L或Y),然后转换为非线性感知亮度(L*)


寻找亮度:

...因为很明显它在某个地方丢失了……

第一步:

将所有sRGB 8位整数值转换为十进制0.0-1.0

  vR = sR / 255;
  vG = sG / 255;
  vB = sB / 255;

第二步:

将gamma编码的RGB转换为线性值。例如,sRGB(计算机标准)要求功率曲线约为V^2.2,尽管“准确的”变换是:

其中V´为sRGB的伽玛编码R、G或B通道。 伪代码:

function sRGBtoLin(colorChannel) {
        // Send this function a decimal sRGB gamma encoded color value
        // between 0.0 and 1.0, and it returns a linearized value.

    if ( colorChannel <= 0.04045 ) {
            return colorChannel / 12.92;
        } else {
            return pow((( colorChannel + 0.055)/1.055),2.4);
        }
    }

第三步:

要找到亮度(Y),应用sRGB的标准系数:

使用上述函数的伪代码:

Y = (0.2126 * sRGBtoLin(vR) + 0.7152 * sRGBtoLin(vG) + 0.0722 * sRGBtoLin(vB))

找到可感知的轻盈:

步骤四:

从上面取亮度Y,变换为L*

伪代码:

function YtoLstar(Y) {
        // Send this function a luminance value between 0.0 and 1.0,
        // and it returns L* which is "perceptual lightness"

    if ( Y <= (216/24389)) {       // The CIE standard states 0.008856 but 216/24389 is the intent for 0.008856451679036
            return Y * (24389/27);  // The CIE standard states 903.3, but 24389/27 is the intent, making 903.296296296296296
        } else {
            return pow(Y,(1/3)) * 116 - 16;
        }
    }

L*是一个从0(黑色)到100(白色)的值,其中50是感知的“中间灰色”。L* = 50相当于Y = 18.4,换句话说,一张18%的灰卡,代表一张照片曝光的中间(安塞尔·亚当斯V区)。

引用:

IEC 61966-2-1:1999标准 维基百科sRGB 维基百科CIELAB 维基百科CIEXYZ Charles Poynton的Gamma常见问题解答

下面是将sRGB图像转换为灰度的唯一正确算法,如在浏览器等中使用。

在计算内积之前,有必要对颜色空间应用伽玛函数的逆。然后你把函数应用到减少的值上。未能合并gamma函数可能导致高达20%的误差。

对于典型的计算机,颜色空间是sRGB。sRGB的正确数字约为。0.21 0.72 0.07。sRGB的Gamma是一个复合函数,近似取幂1/(2.2)。这是c++的全部内容。

// sRGB luminance(Y) values
const double rY = 0.212655;
const double gY = 0.715158;
const double bY = 0.072187;

// Inverse of sRGB "gamma" function. (approx 2.2)
double inv_gam_sRGB(int ic) {
    double c = ic/255.0;
    if ( c <= 0.04045 )
        return c/12.92;
    else 
        return pow(((c+0.055)/(1.055)),2.4);
}

// sRGB "gamma" function (approx 2.2)
int gam_sRGB(double v) {
    if(v<=0.0031308)
      v *= 12.92;
    else 
      v = 1.055*pow(v,1.0/2.4)-0.055;
    return int(v*255+0.5); // This is correct in C++. Other languages may not
                           // require +0.5
}

// GRAY VALUE ("brightness")
int gray(int r, int g, int b) {
    return gam_sRGB(
            rY*inv_gam_sRGB(r) +
            gY*inv_gam_sRGB(g) +
            bY*inv_gam_sRGB(b)
    );
}