我正在寻找某种公式或算法来确定给定RGB值的颜色的亮度。我知道这不像把RGB值加在一起那么简单,更高的总和更亮,但我有点不知所措,不知道从哪里开始。
当前回答
有趣的是,RGB=>HSV的公式只是使用v=MAX3(r,g,b)。换句话说,你可以用(r,g,b)的最大值作为HSV中的V。
我查了一下,在Hearn & Baker的575页,这也是他们计算“价值”的方法。
其他回答
把这看作是对Myndex的精彩回答的补充。正如他(和其他人)解释的那样,计算RGB颜色的相对亮度(和感知亮度)的算法是设计用于线性RGB值的。你不能只是将它们应用到原始sRGB值上,并希望得到相同的结果。
理论上,这一切听起来都很棒,但我真的需要亲眼看看证据,所以,受到彼得·赫塔克(Petr Hurtak)的颜色渐变的启发,我自己做了一个。它们说明了两种最常见的算法(ITU-R建议BT.601和BT.709),并清楚地说明了为什么应该使用线性值(而不是伽玛校正值)进行计算。
首先,下面是旧的ITU BT.601算法的结果。左边的使用原始sRGB值。右边的使用线性值。
ITU-R BT.601颜色亮度梯度
0.299 r + 0.587 g + 0.114 b
在这个分辨率下,左边的照片实际上看起来非常好!但如果你仔细观察,你会发现一些问题。在更高的分辨率下,不需要的人工制品更加明显:
线性的不受这些影响,但是有很多干扰。让我们将其与ITU-R建议BT.709进行比较……
ITU-R BT.709颜色亮度梯度
0.2126 r + 0.7152 g + 0.0722 b
哦男孩。显然不打算与原始sRGB值一起使用!然而,这正是大多数人所做的!
在高分辨率下,你可以真正看到这个算法在使用线性值时是多么有效。它没有之前那个那么多噪音。虽然这些算法都不是完美的,但这个算法已经是最好的了。
再加上其他人说的话:
所有这些方程在实践中都工作得很好,但如果你需要非常精确,你必须首先将颜色转换为线性颜色空间(应用逆图像-gamma),对原色进行权重平均,如果你想显示颜色- 把亮度调回监控器伽马。
在深灰色中,忽略伽玛和正确伽玛之间的亮度差异高达20%。
请定义亮度。如果你想知道颜色有多接近白色你可以用欧几里得距离(255,255,255)
我认为你正在寻找的是RGB ->流光转换公式。
光度/数字ITU BT.709:
Y = 0.2126 R + 0.7152 G + 0.0722 B
数字ITU BT.601(给予R和B部分更多权重):
Y = 0.299 R + 0.587 G + 0.114 B
如果你愿意用准确性来换取性能,有两个近似公式:
Y = 0.33 R + 0.5 G + 0.16 B
Y = 0.375 R + 0.5 G + 0.125 B
这些可以快速计算为
Y = (R+R+B+G+G+G)/6
Y = (R+R+R+B+G+G+G+G)>>3
The inverse-gamma formula by Jive Dadson needs to have the half-adjust removed when implemented in Javascript, i.e. the return from function gam_sRGB needs to be return int(v*255); not return int(v*255+.5); Half-adjust rounds up, and this can cause a value one too high on a R=G=B i.e. grey colour triad. Greyscale conversion on a R=G=B triad should produce a value equal to R; it's one proof that the formula is valid. See Nine Shades of Greyscale for the formula in action (without the half-adjust).