我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

df_normalized = df / df.max(axis=0)

其他回答

Pandas默认情况下按列进行归一化。试试下面的代码。

X= pd.read_csv('.\\data.csv')
X = (X-X.min())/(X.max()-X.min())

输出值将在0和1的范围内。

你可以在一行中完成

DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)

它取每一列的平均值,然后从每一行中减去它(平均值)(特定列的平均值仅从该行中减去),然后仅除以平均值。最后,我们得到的是规范化的数据集。

如果你喜欢使用sklearn包,你可以像这样使用pandas loc来保持列名和索引名:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() 
scaled_values = scaler.fit_transform(df) 
df.loc[:,:] = scaled_values

注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。


简单就是美:

df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()

你可以简单地使用pandas.DataFrame。Transform1函数如下所示:

df.transform(lambda x: x/x.max())