我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
如果你的数据是正倾斜的,最好的归一化方法是使用对数变换:
df = np.log10(df)
其他回答
如果你喜欢使用sklearn包,你可以像这样使用pandas loc来保持列名和索引名:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(df)
df.loc[:,:] = scaled_values
这只是简单的数学。答案应该如下所示。
normed_df = (df - df.min()) / (df.max() - df.min())
睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。
我对这类问题的解决方案如下:
from sklearn import preprocesing
x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
x_new = pd.DataFrame(x_scaled)
df = pd.concat([df.Categoricals,x_new])
嘿,使用带有lambda的apply函数来加速这个过程:
def normalize(df_col):
# Condition to exclude 'ID' and 'Class' feature
if (str(df_col.name) != str('ID') and str(df_col.name)!=str('Class')):
max_value = df_col.max()
min_value = df_col.min()
#It avoids NaN and return 0 instead
if max_value == min_value:
return 0
sub_value = max_value - min_value
return np.divide(np.subtract(df_col,min_value),sub_value)
else:
return df_col
df_normalize = df.apply(lambda x :normalize(x))
你可以在一行中完成
DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)
它取每一列的平均值,然后从每一行中减去它(平均值)(特定列的平均值仅从该行中减去),然后仅除以平均值。最后,我们得到的是规范化的数据集。