我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
如果你的数据是正倾斜的,最好的归一化方法是使用对数变换:
df = np.log10(df)
其他回答
如果你喜欢使用sklearn包,你可以像这样使用pandas loc来保持列名和索引名:
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_values = scaler.fit_transform(df)
df.loc[:,:] = scaled_values
注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。
简单就是美:
df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()
这只是简单的数学。答案应该如下所示。
normed_df = (df - df.min()) / (df.max() - df.min())
使用Pandas的一个简单方法:(这里我想使用均值归一化)
normalized_df=(df-df.mean())/df.std()
使用最小-最大归一化:
normalized_df=(df-df.min())/(df.max()-df.min())
编辑:为了解决一些问题,需要说明Pandas在上面的代码中自动应用列函数。
Pandas默认情况下按列进行归一化。试试下面的代码。
X= pd.read_csv('.\\data.csv')
X = (X-X.min())/(X.max()-X.min())
输出值将在0和1的范围内。