我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

如果你的数据是正倾斜的,最好的归一化方法是使用对数变换:

df = np.log10(df)

其他回答

如果你喜欢使用sklearn包,你可以像这样使用pandas loc来保持列名和索引名:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler() 
scaled_values = scaler.fit_transform(df) 
df.loc[:,:] = scaled_values

这只是简单的数学。答案应该如下所示。

normed_df = (df - df.min()) / (df.max() - df.min())

睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。

我对这类问题的解决方案如下:

 from sklearn import preprocesing
 x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
 min_max_scaler = preprocessing.MinMaxScaler()
 x_scaled = min_max_scaler.fit_transform(x)
 x_new = pd.DataFrame(x_scaled)
 df = pd.concat([df.Categoricals,x_new])

嘿,使用带有lambda的apply函数来加速这个过程:

def normalize(df_col):

  # Condition to exclude 'ID' and 'Class' feature
  if (str(df_col.name) != str('ID') and str(df_col.name)!=str('Class')):
        max_value = df_col.max()
        min_value = df_col.min()

        #It avoids NaN and return 0 instead
        if max_value == min_value:
          return 0

        sub_value = max_value - min_value
        return np.divide(np.subtract(df_col,min_value),sub_value)
  else:
        return df_col

 df_normalize = df.apply(lambda x :normalize(x))

你可以在一行中完成

DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)

它取每一列的平均值,然后从每一行中减去它(平均值)(特定列的平均值仅从该行中减去),然后仅除以平均值。最后,我们得到的是规范化的数据集。