我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
归一化方法的详细示例
熊猫正常化(无偏) Sklearn归一化(有偏) 有偏见vs无偏见会影响机器学习吗? Mix-max扩展
引用: 维基百科:标准偏差的无偏估计
示例数据
import pandas as pd
df = pd.DataFrame({
'A':[1,2,3],
'B':[100,300,500],
'C':list('abc')
})
print(df)
A B C
0 1 100 a
1 2 300 b
2 3 500 c
使用熊猫进行标准化(给出无偏倚的估计)
当归一化时,我们只需减去平均值并除以标准差。
df.iloc[:,0:-1] = df.iloc[:,0:-1].apply(lambda x: (x-x.mean())/ x.std(), axis=0)
print(df)
A B C
0 -1.0 -1.0 a
1 0.0 0.0 b
2 1.0 1.0 c
使用sklearn进行标准化(给出有偏差的估计,与熊猫不同)
如果你用sklearn做同样的事情,你会得到不同的输出!
import pandas as pd
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df = pd.DataFrame({
'A':[1,2,3],
'B':[100,300,500],
'C':list('abc')
})
df.iloc[:,0:-1] = scaler.fit_transform(df.iloc[:,0:-1].to_numpy())
print(df)
A B C
0 -1.224745 -1.224745 a
1 0.000000 0.000000 b
2 1.224745 1.224745 c
对sklearn有偏见的估计会降低机器学习的能力吗?
NO.
sklearn.预处理.scale的官方文档指出,使用偏估计器不太可能影响机器学习算法的性能,我们可以安全地使用它们。
来自官方文件:
我们对标准偏差使用一个有偏估计器,相当于numpy。性病(x, ddof = 0)。注意ddof的选择不太可能影响模型性能。
那MinMax Scaling呢?
在最小最大值缩放中没有标准偏差计算。所以熊猫和scikit-learn的结果是一样的。
import pandas as pd
df = pd.DataFrame({
'A':[1,2,3],
'B':[100,300,500],
})
(df - df.min()) / (df.max() - df.min())
A B
0 0.0 0.0
1 0.5 0.5
2 1.0 1.0
# Using sklearn
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
arr_scaled = scaler.fit_transform(df)
print(arr_scaled)
[[0. 0. ]
[0.5 0.5]
[1. 1. ]]
df_scaled = pd.DataFrame(arr_scaled, columns=df.columns,index=df.index)
print(df_scaled)
A B
0 0.0 0.0
1 0.5 0.5
2 1.0 1.0
其他回答
注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。
简单就是美:
df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()
我认为在熊猫身上更好的方法是
df = df/df.max().astype(np.float64)
如果在你的数据帧中出现负数,你应该用负数代替
df = df/df.loc[df.abs().idxmax()].astype(np.float64)
你可以在一行中完成
DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)
它取每一列的平均值,然后从每一行中减去它(平均值)(特定列的平均值仅从该行中减去),然后仅除以平均值。最后,我们得到的是规范化的数据集。
这是你如何使用列表推导式来做的:
[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]
Pandas默认情况下按列进行归一化。试试下面的代码。
X= pd.read_csv('.\\data.csv')
X = (X-X.min())/(X.max()-X.min())
输出值将在0和1的范围内。