我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range
您可以执行以下操作:
def normalize(df):
result = df.copy()
for feature_name in df.columns:
max_value = df[feature_name].max()
min_value = df[feature_name].min()
result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
return result
你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。
其他回答
你可以在一行中完成
DF_test = DF_test.sub(DF_test.mean(axis=0), axis=1)/DF_test.mean(axis=0)
它取每一列的平均值,然后从每一行中减去它(平均值)(特定列的平均值仅从该行中减去),然后仅除以平均值。最后,我们得到的是规范化的数据集。
你可以简单地使用pandas.DataFrame。Transform1函数如下所示:
df.transform(lambda x: x/x.max())
你可能想让一些列被标准化,而其他的列是不变的,比如一些回归任务,数据标签或分类列是不变的,所以我建议你用这种python的方式(它是@shg和@Cina答案的组合):
features_to_normalize = ['A', 'B', 'C']
# could be ['A','B']
df[features_to_normalize] = df[features_to_normalize].apply(lambda x:(x-x.min()) / (x.max()-x.min()))
这是你如何使用列表推导式来做的:
[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]
基于这篇文章:https://stats.stackexchange.com/questions/70801/how-to-normalize-data-to-0-1-range
您可以执行以下操作:
def normalize(df):
result = df.copy()
for feature_name in df.columns:
max_value = df[feature_name].max()
min_value = df[feature_name].min()
result[feature_name] = (df[feature_name] - min_value) / (max_value - min_value)
return result
你不需要一直担心你的价值观是积极的还是消极的。这些值应该很好地分布在0和1之间。