我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:

df:

A     B   C
1000  10  0.5
765   5   0.35
800   7   0.09

知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?

我想要的输出是:

A     B    C
1     1    1
0.765 0.5  0.7
0.8   0.7  0.18(which is 0.09/0.5)

当前回答

这只是简单的数学。答案应该如下所示。

normed_df = (df - df.min()) / (df.max() - df.min())

其他回答

这是你如何使用列表推导式来做的:

[df[col].update((df[col] - df[col].min()) / (df[col].max() - df[col].min())) for col in df.columns]

睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。

我对这类问题的解决方案如下:

 from sklearn import preprocesing
 x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
 min_max_scaler = preprocessing.MinMaxScaler()
 x_scaled = min_max_scaler.fit_transform(x)
 x_new = pd.DataFrame(x_scaled)
 df = pd.concat([df.Categoricals,x_new])

您可以使用sklearn包及其相关的预处理实用程序来规范化数据。

import pandas as pd
from sklearn import preprocessing

x = df.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df = pd.DataFrame(x_scaled)

有关更多信息,请参阅scikit-learn关于预处理数据的文档:将特性扩展到一个范围。

Pandas默认情况下按列进行归一化。试试下面的代码。

X= pd.read_csv('.\\data.csv')
X = (X-X.min())/(X.max()-X.min())

输出值将在0和1的范围内。

def normalize(x):
    try:
        x = x/np.linalg.norm(x,ord=1)
        return x
    except :
        raise
data = pd.DataFrame.apply(data,normalize)

根据pandas的文档,DataFrame结构可以对自身应用操作(函数)。

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)

沿着数据帧的输入轴应用函数。 传递给函数的对象是具有DataFrame的索引(轴=0)或列(轴=1)索引的Series对象。返回类型取决于传递的函数是否聚合,如果DataFrame为空则使用reduce参数。

您可以应用自定义函数来操作DataFrame。