我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
下面的函数计算Z分数:
def standardization(dataset):
""" Standardization of numeric fields, where all values will have mean of zero
and standard deviation of one. (z-score)
Args:
dataset: A `Pandas.Dataframe`
"""
dtypes = list(zip(dataset.dtypes.index, map(str, dataset.dtypes)))
# Normalize numeric columns.
for column, dtype in dtypes:
if dtype == 'float32':
dataset[column] -= dataset[column].mean()
dataset[column] /= dataset[column].std()
return dataset
其他回答
你可以简单地使用pandas.DataFrame。Transform1函数如下所示:
df.transform(lambda x: x/x.max())
注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。
简单就是美:
df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()
正常化
您可以使用minmax_scale将每一列转换为从0到1的刻度。
from sklearn.preprocessing import minmax_scale
df[:] = minmax_scale(df)
标准化
您可以使用比例将每列居中到平均值,并缩放到单位方差。
from sklearn.preprocessing import scale
df[:] = scale(df)
列的子集
归一化单列
from sklearn.preprocessing import minmax_scale
df['a'] = minmax_scale(df['a'])
只归一化数值列
import numpy as np
from sklearn.preprocessing import minmax_scale
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])
完整的示例
# Prep
import pandas as pd
import numpy as np
from sklearn.preprocessing import minmax_scale
# Sample data
df = pd.DataFrame({'a':[0,1,2], 'b':[-10,-30,-50], 'c':['x', 'y', 'z']})
# MinMax normalize all numeric columns
cols = df.select_dtypes(np.number).columns
df[cols] = minmax_scale(df[cols])
# Result
print(df)
# a b c
# 0 0.0 1.0 x
# 2 0.5 0.5 y
# 3 1.0 0.0 z
注:
在所有示例中,可以使用scale来代替minmax_scale。保持索引、列名或非数值变量不变。函数应用于每一列。
警告:
对于机器学习,可以使用minmax_scale或train_test_split后的scale来避免数据泄露。
Info
更多关于标准化和规范化的信息:
https://machinelearningmastery.com/standardscaler-and-minmaxscaler-transforms-in-python/ https://en.wikipedia.org/wiki/Normalization_(统计) https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing
df_normalized = df / df.max(axis=0)
要规范化一个DataFrame列,只使用本机Python。
不同的值会影响过程,例如图的颜色。
0到1之间:
min_val = min(list(df['col']))
max_val = max(list(df['col']))
df['col'] = [(x - min_val) / max_val for x in df['col']]
-1 ~ 1:
df['col'] = [float(i)/sum(df['col']) for i in df['col']]
OR
df['col'] = [float(tp) / max(abs(df['col'])) for tp in df['col']]