我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
我有一个熊猫的数据框架,其中每一列都有不同的值范围。例如:
df:
A B C
1000 10 0.5
765 5 0.35
800 7 0.09
知道我如何规范化这个数据框架的列,其中每个值都在0到1之间吗?
我想要的输出是:
A B C
1 1 1
0.765 0.5 0.7
0.8 0.7 0.18(which is 0.09/0.5)
当前回答
睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。
我对这类问题的解决方案如下:
from sklearn import preprocesing
x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
x_new = pd.DataFrame(x_scaled)
df = pd.concat([df.Categoricals,x_new])
其他回答
注意这个答案,因为它只适用于范围为[0,n]的数据。这对任何范围的数据都不起作用。
简单就是美:
df["A"] = df["A"] / df["A"].max()
df["B"] = df["B"] / df["B"].max()
df["C"] = df["C"] / df["C"].max()
睡魔和普拉文给出的解决方案很好。唯一的问题是,如果你在数据帧的其他列中有分类变量,这种方法将需要一些调整。
我对这类问题的解决方案如下:
from sklearn import preprocesing
x = pd.concat([df.Numerical1, df.Numerical2,df.Numerical3])
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
x_new = pd.DataFrame(x_scaled)
df = pd.concat([df.Categoricals,x_new])
你可能想让一些列被标准化,而其他的列是不变的,比如一些回归任务,数据标签或分类列是不变的,所以我建议你用这种python的方式(它是@shg和@Cina答案的组合):
features_to_normalize = ['A', 'B', 'C']
# could be ['A','B']
df[features_to_normalize] = df[features_to_normalize].apply(lambda x:(x-x.min()) / (x.max()-x.min()))
下面的函数计算Z分数:
def standardization(dataset):
""" Standardization of numeric fields, where all values will have mean of zero
and standard deviation of one. (z-score)
Args:
dataset: A `Pandas.Dataframe`
"""
dtypes = list(zip(dataset.dtypes.index, map(str, dataset.dtypes)))
# Normalize numeric columns.
for column, dtype in dtypes:
if dtype == 'float32':
dataset[column] -= dataset[column].mean()
dataset[column] /= dataset[column].std()
return dataset
使用Pandas的一个简单方法:(这里我想使用均值归一化)
normalized_df=(df-df.mean())/df.std()
使用最小-最大归一化:
normalized_df=(df-df.min())/(df.max()-df.min())
编辑:为了解决一些问题,需要说明Pandas在上面的代码中自动应用列函数。