有了一个点列表,我如何确定它们是否是顺时针顺序的?

例如:

point[0] = (5,0)
point[1] = (6,4)
point[2] = (4,5)
point[3] = (1,5)
point[4] = (1,0)

会说它是逆时针的(对某些人来说是逆时针的)


当前回答

正如这篇维基百科文章中所解释的曲线方向,给定平面上的3个点p, q和r(即x和y坐标),您可以计算以下行列式的符号

如果行列式为负(即定向(p, q, r) < 0),则多边形是顺时针方向(CW)。如果行列式为正(即定向(p, q, r) > 0),则多边形是逆时针方向(CCW)。如果点p, q和r共线,行列式为零(即定向(p, q, r) == 0)。

在上面的公式中,由于我们使用的是齐次坐标,我们将1放在p, q和r的坐标前面。

其他回答

对于那些不想“重新发明轮子”的人,我认为值得一提的是,这个检查是在一个名为Shapely (github)的漂亮的Python包中实现的(它基于GEOS C/ c++库):

Shapely is a BSD-licensed Python package for manipulation and analysis of planar geometric objects. It is using the widely deployed open-source geometry library GEOS (the engine of PostGIS, and a port of JTS). Shapely wraps GEOS geometries and operations to provide both a feature rich Geometry interface for singular (scalar) geometries and higher-performance NumPy ufuncs for operations using arrays of geometries. Shapely is not primarily focused on data serialization formats or coordinate systems, but can be readily integrated with packages that are.

来源:https://shapely.readthedocs.io/en/stable/

一个给出OP坐标的小例子:

import numpy as np
from shapely.geometry import Polygon

points = np.array([
    (5,0),
    (6,4),
    (4,5),
    (1,5),
    (1,0)
])

P = Polygon(points)

这是新构造的多边形:

import matplotlib.pyplot as plt

x,y = P.exterior.coords.xy
plt.plot(x,y)
plt.axis('equal')
plt.grid()
plt.show()

你可以直接使用LinearRing的is_ccw属性来检查多边形是CW还是CCW:

type(P.exterior)
>: shapely.geometry.polygon.LinearRing

P.exterior.is_ccw
>: True

如果颠倒:

points = np.flipud(points)
points
>: 
array([[1, 0],
       [1, 5],
       [4, 5],
       [6, 4],
       [5, 0]])


P1 = Polygon(points)

P1.exterior.is_ccw
>: True

进一步阅读的文档和参考资料:

shaely is_ccw (github): https://github.com/shapely/shapely/blob/eba985c6e0170ecdd90c83592fd0afa7ae793cb8/shapely/predicates.py#L72-L108 Libgeos (github): https://github.com/libgeos/geos GEOS API参考:https://libgeos.org/doxygen/classgeos_1_1algorithm_1_1Orientation.html#a5af93795969b80f97d7997195974d7c8 GEOS实现(github): https://github.com/libgeos/geos/blob/ab0ce6dafdf7f75ec6d234b6c65bb209037dda17/src/algorithm/Orientation.cpp#L43-L133

The cross product measures the degree of perpendicular-ness of two vectors. Imagine that each edge of your polygon is a vector in the x-y plane of a three-dimensional (3-D) xyz space. Then the cross product of two successive edges is a vector in the z-direction, (positive z-direction if the second segment is clockwise, minus z-direction if it's counter-clockwise). The magnitude of this vector is proportional to the sine of the angle between the two original edges, so it reaches a maximum when they are perpendicular, and tapers off to disappear when the edges are collinear (parallel).

因此,对于多边形的每个顶点(点),计算两条相邻边的叉乘大小:

Using your data:
point[0] = (5, 0)
point[1] = (6, 4)
point[2] = (4, 5)
point[3] = (1, 5)
point[4] = (1, 0)

把边连续地标为 edgeA是从point0到point1的段 点1到点2之间的edgeB ... edgeE在point4和point0之间。

那么顶点A (point0)在两者之间 edgeE[从点4到点0] 从point0到' point1'

这两条边本身就是向量,它们的x坐标和y坐标可以通过减去它们的起点和终点的坐标来确定:

edgeE = point0 - point4 = (1,0) - (5,0) = (- 4,0) and edgeA = point1 - point0 = (6,4) - (1,0) = (5,4) and

这两个相邻边的外积是用下面矩阵的行列式来计算的,这个矩阵是通过将两个向量的坐标放在表示三个坐标轴的符号(i, j, & k)下面来构造的。第三个(零)值坐标在那里,因为外积概念是一个三维结构,所以我们将这些2-D向量扩展到3-D,以便应用外积:

 i    j    k 
-4    0    0
 1    4    0    

假设所有的叉乘都产生一个垂直于两个向量相乘平面的向量,上面矩阵的行列式只有一个k(或z轴)分量。 计算k轴或z轴分量大小的公式为 A1 *b2 - a2*b1 = -4* 4 - 0* 1 = -16

这个值的大小(-16)是两个原始向量夹角的正弦值,乘以两个向量大小的乘积。 实际上,它值的另一个公式是 A X B(叉乘)= |A| * |B| * sin(AB)。

为了得到角度的大小你需要用这个值(-16)除以两个向量大小的乘积。

|A| * |B| = 4 *根号(17)= 16.4924…

所以sin(AB) = -16 / 16.4924 = -.97014…

这是一个度量顶点后的下一段是否向左或向右弯曲,以及弯曲的程度。不需要取arcsin函数。我们只关心它的大小,当然还有它的符号(正的还是负的)!

对闭合路径周围的其他4个点都这样做,并将每个顶点的计算值相加。

如果最终的和是正的,就顺时针,负的,逆时针。

虽然这些答案是正确的,但它们在数学上的强度比必要的要大。假设地图坐标,其中最北的点是地图上的最高点。找到最北的点,如果两个点相等,它是最北的,然后是最东的(这是lhf在他的答案中使用的点)。在你的观点中,

点[0]= (5,0)

点[1]= (6,4)

点[2]= (4,5)

点[3]= (1,5)

点[4]= (1,0)

If we assume that P2 is the most north then east point either the previous or next point determine clockwise, CW, or CCW. Since the most north point is on the north face, if the P1 (previous) to P2 moves east the direction is CW. In this case, it moves west, so the direction is CCW as the accepted answer says. If the previous point has no horizontal movement, then the same system applies to the next point, P3. If P3 is west of P2, it is, then the movement is CCW. If the P2 to P3 movement is east, it's west in this case, the movement is CW. Assume that nte, P2 in your data, is the most north then east point and the prv is the previous point, P1 in your data, and nxt is the next point, P3 in your data, and [0] is horizontal or east/west where west is less than east, and [1] is vertical.

if (nte[0] >= prv[0] && nxt[0] >= nte[0]) return(CW);
if (nte[0] <= prv[0] && nxt[0] <= nte[0]) return(CCW);
// Okay, it's not easy-peasy, so now, do the math
if (nte[0] * nxt[1] - nte[1] * nxt[0] - prv[0] * (nxt[1] - crt[1]) + prv[1] * (nxt[0] - nte[0]) >= 0) return(CCW); // For quadrant 3 return(CW)
return(CW) // For quadrant 3 return (CCW)

c#代码实现lhf的答案:

// https://en.wikipedia.org/wiki/Curve_orientation#Orientation_of_a_simple_polygon
public static WindingOrder DetermineWindingOrder(IList<Vector2> vertices)
{
    int nVerts = vertices.Count;
    // If vertices duplicates first as last to represent closed polygon,
    // skip last.
    Vector2 lastV = vertices[nVerts - 1];
    if (lastV.Equals(vertices[0]))
        nVerts -= 1;
    int iMinVertex = FindCornerVertex(vertices);
    // Orientation matrix:
    //     [ 1  xa  ya ]
    // O = | 1  xb  yb |
    //     [ 1  xc  yc ]
    Vector2 a = vertices[WrapAt(iMinVertex - 1, nVerts)];
    Vector2 b = vertices[iMinVertex];
    Vector2 c = vertices[WrapAt(iMinVertex + 1, nVerts)];
    // determinant(O) = (xb*yc + xa*yb + ya*xc) - (ya*xb + yb*xc + xa*yc)
    double detOrient = (b.X * c.Y + a.X * b.Y + a.Y * c.X) - (a.Y * b.X + b.Y * c.X + a.X * c.Y);

    // TBD: check for "==0", in which case is not defined?
    // Can that happen?  Do we need to check other vertices / eliminate duplicate vertices?
    WindingOrder result = detOrient > 0
            ? WindingOrder.Clockwise
            : WindingOrder.CounterClockwise;
    return result;
}

public enum WindingOrder
{
    Clockwise,
    CounterClockwise
}

// Find vertex along one edge of bounding box.
// In this case, we find smallest y; in case of tie also smallest x.
private static int FindCornerVertex(IList<Vector2> vertices)
{
    int iMinVertex = -1;
    float minY = float.MaxValue;
    float minXAtMinY = float.MaxValue;
    for (int i = 0; i < vertices.Count; i++)
    {
        Vector2 vert = vertices[i];
        float y = vert.Y;
        if (y > minY)
            continue;
        if (y == minY)
            if (vert.X >= minXAtMinY)
                continue;

        // Minimum so far.
        iMinVertex = i;
        minY = y;
        minXAtMinY = vert.X;
    }

    return iMinVertex;
}

// Return value in (0..n-1).
// Works for i in (-n..+infinity).
// If need to allow more negative values, need more complex formula.
private static int WrapAt(int i, int n)
{
    // "+n": Moves (-n..) up to (0..).
    return (i + n) % n;
}

我将提出另一个解决方案,因为它很简单,不需要大量的数学运算,它只是使用了基本的代数。计算多边形的带符号面积。如果是负的,点是顺时针的,如果是正的,点是逆时针的。(这与Beta的解决方案非常相似。)

计算带符号的面积: A = 1/2 * (x1*y2 - x2*y1 + x2*y3 - x3*y2 +…+ xn*y1 - x1*yn)

或者在伪代码中:

signedArea = 0
for each point in points:
    x1 = point[0]
    y1 = point[1]
    if point is last point
        x2 = firstPoint[0]
        y2 = firstPoint[1]
    else
        x2 = nextPoint[0]
        y2 = nextPoint[1]
    end if

    signedArea += (x1 * y2 - x2 * y1)
end for
return signedArea / 2

注意,如果你只是检查顺序,你不需要麻烦除以2。

来源:http://mathworld.wolfram.com/PolygonArea.html