我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

Two的补码是一种存储整数的聪明方法,因此常见的数学问题很容易实现。

为了理解,你必须把数字想象成二进制。

它基本上是说,

对于0,用所有的0。 对于正整数,开始计数,最大值为2(位数-1)-1。 对于负整数,做完全相同的事情,但是切换0和1的角色并开始倒数(所以不是从0000开始,而是从1111开始——这是“补”部分)。

让我们尝试一个4位的迷你字节(我们称之为1/2个字节)。

0000 -零 0001 - 1 0010 - 2 0011 - 3 0100到0111,4点到7点

这是我们目前能找到的阳性结果。23-1 = 7。

负面影响:

1111 - 1 1110 - 2 1101 - 3 1100到1000 - - 4到- 8

注意,负数(1000 = -8)有一个额外的值,而正数没有。这是因为0000用于表示零。这可以看作是计算机的数轴。

区分正数和负数

这样一来,第一个位就扮演了“符号”位的角色,因为它可以用来区分非负的十进制值和负的十进制值。如果最高有效位是1,那么二进制就可以说是负的,如果最高有效位(最左边)是0,就可以说十进制值是非负的。

“符号量级”的负数只是将它们的正数对应的符号位颠倒了,但这种方法必须处理将1000(一个1后面跟着所有的0)解释为“负零”,这是令人困惑的。

“1的补”负数只是它们的正数的位补,这也导致了“负零”和1111(都是1)的混淆。

除非你的工作非常接近硬件,否则你可能不需要处理个位补或符号幅度整数表示。

其他回答

让我们用8位的二进制形式得到答案10 - 12: 我们要做的是10 + (-12)

我们需要用12的恭维部分减去10。 12的二进制值是00001100。 10的二进制值是00001010。

为了得到12的赞美部分,我们只需要把所有的位反转,然后加1。 12的二进制反转是11110011。这也是逆码(一个人的补码)。 现在我们需要加一个,现在是11110100。

所以11110100是12的赞美!这样想很简单。

现在你可以用二进制形式来解决上面的10 - 12问题了。

00001010
11110100
-----------------
11111110  

Two的补码是一种存储整数的聪明方法,因此常见的数学问题很容易实现。

为了理解,你必须把数字想象成二进制。

它基本上是说,

对于0,用所有的0。 对于正整数,开始计数,最大值为2(位数-1)-1。 对于负整数,做完全相同的事情,但是切换0和1的角色并开始倒数(所以不是从0000开始,而是从1111开始——这是“补”部分)。

让我们尝试一个4位的迷你字节(我们称之为1/2个字节)。

0000 -零 0001 - 1 0010 - 2 0011 - 3 0100到0111,4点到7点

这是我们目前能找到的阳性结果。23-1 = 7。

负面影响:

1111 - 1 1110 - 2 1101 - 3 1100到1000 - - 4到- 8

注意,负数(1000 = -8)有一个额外的值,而正数没有。这是因为0000用于表示零。这可以看作是计算机的数轴。

区分正数和负数

这样一来,第一个位就扮演了“符号”位的角色,因为它可以用来区分非负的十进制值和负的十进制值。如果最高有效位是1,那么二进制就可以说是负的,如果最高有效位(最左边)是0,就可以说十进制值是非负的。

“符号量级”的负数只是将它们的正数对应的符号位颠倒了,但这种方法必须处理将1000(一个1后面跟着所有的0)解释为“负零”,这是令人困惑的。

“1的补”负数只是它们的正数的位补,这也导致了“负零”和1111(都是1)的混淆。

除非你的工作非常接近硬件,否则你可能不需要处理个位补或符号幅度整数表示。

我想知道是否有比维基百科上的文章更好的解释。

你试图用2的补表示法解决的基本问题是存储负整数的问题。

首先,考虑一个存储在4位的无符号整数。您可以拥有以下内容

0000 = 0
0001 = 1
0010 = 2
...
1111 = 15

这些是无符号的,因为没有指示它们是负的还是正的。

符号大小和多余符号

要存储负数,您可以尝试一些方法。首先,您可以使用符号幅度表示法,它将第一个位指定为符号位来表示+/-,其余位表示幅度。还是用4位假设1代表- 0代表+那么你就有

0000 = +0
0001 = +1
0010 = +2
...
1000 = -0
1001 = -1
1111 = -7

所以,你看到问题了吗?我们有正0和负0。更大的问题是二进制数的加减法。使用符号幅度进行加减法的电路将非常复杂。

是什么

0010
1001 +
----

?

另一个系统是过量符号。你可以存储负数,你可以摆脱两个0的问题但加减法仍然很困难。

于是就有了二的补。现在您可以存储正整数和负整数,并相对轻松地执行算术。有许多方法可以将一个数转换为二的补数。这是一个。

将十进制转换为二的补数

将数字转换为二进制(暂时忽略符号) 例如,5是0101,-5是0101 如果这个数字是正数,那么你就完成了。 例5是二进制的0101,使用二的补符号。 如果数字是负的,那么 3.1求补(0和1的倒数) 例如,-5是0101,所以找到补语是1010 3.2补数1010 + 1 = 1011加1 因此,2的补数-5等于1011。

那么,如果你想用二进制写2 +(-3)呢?2 +(-3) = -1。 如果你用符号的大小来加这些数,你需要做什么?0010 + 1101 = ?

使用2的补码,想想会有多简单。

 2  =  0010
 -3 =  1101 +
 -------------
 -1 =  1111

将2的补数转换为十进制

将1111转换为十进制:

这个数从1开始,所以它是负的,所以我们找到1111的补数,也就是0000。 0000加上1,得到0001。 将0001转换为十进制,即1。 应用符号= -1。

哒哒!

想象一下,你有有限数量的比特/比特/数字等等。将0定义为所有数字都为0,并自然向上计数:

00
01
02
..

最终你会溢出。

98
99
00

我们有两位数字,可以表示从0到100的所有数字。所有这些数字都是正数!假设我们也想表示负数?

我们真正拥有的是一个循环。2之前的数字是1。1之前的数字是0。0之前的数字是…99.

为了简单起见,我们设任何大于50的数都是负数。0 ~ 49代表0 ~ 49。“99”是-1,“98”是-2,…“50”是-50。

这个表示是十的补数。计算机通常使用2的补码,除了使用位而不是数字之外,它是一样的。

10的补数的好处在于加法运算可以正常进行。你不需要做任何特殊的加法和负数!

通过对给定数的第1个补数加1,可以求出两个补数。 假设我们要求出10101的两个补,然后求出它的一个补,也就是,在这个结果上加1,也就是,01010+1=01011,这就是最终答案。