我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。
什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?
我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。
什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?
当前回答
你也可以使用在线计算器来计算一个十进制数的补二表示:http://www.convertforfree.com/twos-complement-calculator/
其他回答
这是一种对负整数进行编码的聪明方法,该方法将数据类型中大约一半的位组合保留给负整数,并且将大多数负整数与其对应的正整数相加会导致进位溢出,使结果为二进制零。
因此,在2的补码中,如果1是0x0001,那么-1是0x1111,因为这将导致0x0000的组合和(溢出1)。
2的补码是表示负数的一种方式,大多数控制器和处理器都以2的补码形式存储负数。
问题是“什么是“2的补码”?”
对于那些想要从理论上理解它的人(以及我试图补充其他更实际的答案),简单的答案是:2的补码是对偶系统中不需要额外字符(如+和-)的负整数的表示。
我想知道是否有比维基百科上的文章更好的解释。
你试图用2的补表示法解决的基本问题是存储负整数的问题。
首先,考虑一个存储在4位的无符号整数。您可以拥有以下内容
0000 = 0
0001 = 1
0010 = 2
...
1111 = 15
这些是无符号的,因为没有指示它们是负的还是正的。
符号大小和多余符号
要存储负数,您可以尝试一些方法。首先,您可以使用符号幅度表示法,它将第一个位指定为符号位来表示+/-,其余位表示幅度。还是用4位假设1代表- 0代表+那么你就有
0000 = +0
0001 = +1
0010 = +2
...
1000 = -0
1001 = -1
1111 = -7
所以,你看到问题了吗?我们有正0和负0。更大的问题是二进制数的加减法。使用符号幅度进行加减法的电路将非常复杂。
是什么
0010
1001 +
----
?
另一个系统是过量符号。你可以存储负数,你可以摆脱两个0的问题但加减法仍然很困难。
于是就有了二的补。现在您可以存储正整数和负整数,并相对轻松地执行算术。有许多方法可以将一个数转换为二的补数。这是一个。
将十进制转换为二的补数
将数字转换为二进制(暂时忽略符号) 例如,5是0101,-5是0101 如果这个数字是正数,那么你就完成了。 例5是二进制的0101,使用二的补符号。 如果数字是负的,那么 3.1求补(0和1的倒数) 例如,-5是0101,所以找到补语是1010 3.2补数1010 + 1 = 1011加1 因此,2的补数-5等于1011。
那么,如果你想用二进制写2 +(-3)呢?2 +(-3) = -1。 如果你用符号的大小来加这些数,你需要做什么?0010 + 1101 = ?
使用2的补码,想想会有多简单。
2 = 0010
-3 = 1101 +
-------------
-1 = 1111
将2的补数转换为十进制
将1111转换为十进制:
这个数从1开始,所以它是负的,所以我们找到1111的补数,也就是0000。 0000加上1,得到0001。 将0001转换为十进制,即1。 应用符号= -1。
哒哒!
从数学的角度来看这两个补体系统是有道理的。在ten的补语中,这个想法本质上是“隔离”差异。
示例:63 - 24 = x
我们把24的补数相加,也就是(100 - 24)实际上,我们要做的就是在方程两边加100。
现在方程是:100 + 63 - 24 = x + 100,这就是为什么我们要去掉100(或10或1000或其他)。
由于必须从一长串零中减去一个数字的不方便情况,我们使用“减基数补”系统,在十进制系统中,9的补。
当我们看到一串大的9减去一个数时,我们只需要把数字倒过来。
例如:99999 - 03275 = 96724
这就是为什么在9的补数之后加1。你可能从儿时的数学中知道,9通过“偷走”1变成了10。所以基本上就是10的补位差减去1。
在二进制中,2的补数等于10的补数,而1的补数等于9的补数。主要的区别在于,我们不是试图用10的幂来分离差异(将10、100等添加到等式中),而是试图用2的幂来分离差异。
正是因为这个原因,我们把比特位颠倒。就像小数中的被减数是一串9一样,二进制中的被减数也是一串1。
例如:111111 - 101001 = 010110
因为1链比2的幂小1,它们从差值中“偷”了1,就像小数点中的9一样。
当我们使用负二进制数时,我们实际上是在说
0000 - 0101 = x
1111-0101 = 1010
1111 + 0000 - 0101 = x + 1111
为了“分离”x,我们需要加1,因为1111离10000只有1,我们去掉前导的1,因为我们只是把它加到原始的差值上。
1111 + 1 + 0000 - 0101 = x + 1111 + 1
10000 + 0000 - 0101 = x + 10000
只要两边都去掉10000就得到x,这是基本的代数。