我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

2's complement is essentially a way of coming up with the additive inverse of a binary number. Ask yourself this: Given a number in binary form (present at a fixed length memory location), what bit pattern, when added to the original number (at the fixed length memory location), would make the result all zeros ? (at the same fixed length memory location). If we could come up with this bit pattern then that bit pattern would be the -ve representation (additive inverse) of the original number; as by definition adding a number to its additive inverse always results in zero. Example: take 5 which is 101 present inside a single 8 bit byte. Now the task is to come up with a bit pattern which when added to the given bit pattern (00000101) would result in all zeros at the memory location which is used to hold this 5 i.e. all 8 bits of the byte should be zero. To do that, start from the right most bit of 101 and for each individual bit, again ask the same question: What bit should I add to the current bit to make the result zero ? continue doing that taking in account the usual carry over. After we are done with the 3 right most places (the digits that define the original number without regard to the leading zeros) the last carry goes in the bit pattern of the additive inverse. Furthermore, since we are holding in the original number in a single 8 bit byte, all other leading bits in the additive inverse should also be 1's so that (and this is important) when the computer adds "the number" (represented using the 8 bit pattern) and its additive inverse using "that" storage type (a byte) the result in that byte would be all zeros.

 1 1 1
 ----------
   1 0 1
 1 0 1 1 ---> additive inverse
  ---------
   0 0 0

其他回答

我想知道是否有比维基百科上的文章更好的解释。

你试图用2的补表示法解决的基本问题是存储负整数的问题。

首先,考虑一个存储在4位的无符号整数。您可以拥有以下内容

0000 = 0
0001 = 1
0010 = 2
...
1111 = 15

这些是无符号的,因为没有指示它们是负的还是正的。

符号大小和多余符号

要存储负数,您可以尝试一些方法。首先,您可以使用符号幅度表示法,它将第一个位指定为符号位来表示+/-,其余位表示幅度。还是用4位假设1代表- 0代表+那么你就有

0000 = +0
0001 = +1
0010 = +2
...
1000 = -0
1001 = -1
1111 = -7

所以,你看到问题了吗?我们有正0和负0。更大的问题是二进制数的加减法。使用符号幅度进行加减法的电路将非常复杂。

是什么

0010
1001 +
----

?

另一个系统是过量符号。你可以存储负数,你可以摆脱两个0的问题但加减法仍然很困难。

于是就有了二的补。现在您可以存储正整数和负整数,并相对轻松地执行算术。有许多方法可以将一个数转换为二的补数。这是一个。

将十进制转换为二的补数

将数字转换为二进制(暂时忽略符号) 例如,5是0101,-5是0101 如果这个数字是正数,那么你就完成了。 例5是二进制的0101,使用二的补符号。 如果数字是负的,那么 3.1求补(0和1的倒数) 例如,-5是0101,所以找到补语是1010 3.2补数1010 + 1 = 1011加1 因此,2的补数-5等于1011。

那么,如果你想用二进制写2 +(-3)呢?2 +(-3) = -1。 如果你用符号的大小来加这些数,你需要做什么?0010 + 1101 = ?

使用2的补码,想想会有多简单。

 2  =  0010
 -3 =  1101 +
 -------------
 -1 =  1111

将2的补数转换为十进制

将1111转换为十进制:

这个数从1开始,所以它是负的,所以我们找到1111的补数,也就是0000。 0000加上1,得到0001。 将0001转换为十进制,即1。 应用符号= -1。

哒哒!

问题是“什么是“2的补码”?”

对于那些想要从理论上理解它的人(以及我试图补充其他更实际的答案),简单的答案是:2的补码是对偶系统中不需要额外字符(如+和-)的负整数的表示。

从数学的角度来看这两个补体系统是有道理的。在ten的补语中,这个想法本质上是“隔离”差异。

示例:63 - 24 = x

我们把24的补数相加,也就是(100 - 24)实际上,我们要做的就是在方程两边加100。

现在方程是:100 + 63 - 24 = x + 100,这就是为什么我们要去掉100(或10或1000或其他)。

由于必须从一长串零中减去一个数字的不方便情况,我们使用“减基数补”系统,在十进制系统中,9的补。

当我们看到一串大的9减去一个数时,我们只需要把数字倒过来。

例如:99999 - 03275 = 96724

这就是为什么在9的补数之后加1。你可能从儿时的数学中知道,9通过“偷走”1变成了10。所以基本上就是10的补位差减去1。

在二进制中,2的补数等于10的补数,而1的补数等于9的补数。主要的区别在于,我们不是试图用10的幂来分离差异(将10、100等添加到等式中),而是试图用2的幂来分离差异。

正是因为这个原因,我们把比特位颠倒。就像小数中的被减数是一串9一样,二进制中的被减数也是一串1。

例如:111111 - 101001 = 010110

因为1链比2的幂小1,它们从差值中“偷”了1,就像小数点中的9一样。

当我们使用负二进制数时,我们实际上是在说

0000 - 0101 = x

1111-0101 = 1010

1111 + 0000 - 0101 = x + 1111

为了“分离”x,我们需要加1,因为1111离10000只有1,我们去掉前导的1,因为我们只是把它加到原始的差值上。

1111 + 1 + 0000 - 0101 = x + 1111 + 1

10000 + 0000 - 0101 = x + 10000

只要两边都去掉10000就得到x,这是基本的代数。

2的补语:当我们用一个数字的1的补语加一个额外的1时,我们将得到2的补语。例如:100101,它的1的补足是011010和2的补足是011010+1 = 011011(通过与1的补足相加) 本文以图解的方式对此进行了解释。

你也可以使用在线计算器来计算一个十进制数的补二表示:http://www.convertforfree.com/twos-complement-calculator/