我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

Two的补语主要用于以下原因:

避免0的多个表示形式 避免在溢出的情况下跟踪进位(如补位)。 进行简单的加法和减法运算变得很容易。

其他回答

你也可以使用在线计算器来计算一个十进制数的补二表示:http://www.convertforfree.com/twos-complement-calculator/

从数学的角度来看这两个补体系统是有道理的。在ten的补语中,这个想法本质上是“隔离”差异。

示例:63 - 24 = x

我们把24的补数相加,也就是(100 - 24)实际上,我们要做的就是在方程两边加100。

现在方程是:100 + 63 - 24 = x + 100,这就是为什么我们要去掉100(或10或1000或其他)。

由于必须从一长串零中减去一个数字的不方便情况,我们使用“减基数补”系统,在十进制系统中,9的补。

当我们看到一串大的9减去一个数时,我们只需要把数字倒过来。

例如:99999 - 03275 = 96724

这就是为什么在9的补数之后加1。你可能从儿时的数学中知道,9通过“偷走”1变成了10。所以基本上就是10的补位差减去1。

在二进制中,2的补数等于10的补数,而1的补数等于9的补数。主要的区别在于,我们不是试图用10的幂来分离差异(将10、100等添加到等式中),而是试图用2的幂来分离差异。

正是因为这个原因,我们把比特位颠倒。就像小数中的被减数是一串9一样,二进制中的被减数也是一串1。

例如:111111 - 101001 = 010110

因为1链比2的幂小1,它们从差值中“偷”了1,就像小数点中的9一样。

当我们使用负二进制数时,我们实际上是在说

0000 - 0101 = x

1111-0101 = 1010

1111 + 0000 - 0101 = x + 1111

为了“分离”x,我们需要加1,因为1111离10000只有1,我们去掉前导的1,因为我们只是把它加到原始的差值上。

1111 + 1 + 0000 - 0101 = x + 1111 + 1

10000 + 0000 - 0101 = x + 10000

只要两边都去掉10000就得到x,这是基本的代数。

问题是“什么是“2的补码”?”

对于那些想要从理论上理解它的人(以及我试图补充其他更实际的答案),简单的答案是:2的补码是对偶系统中不需要额外字符(如+和-)的负整数的表示。

两人的补足(托马斯·芬利)

我把所有位的倒数加1。编程:

  // In C++11
  int _powers[] = {
      1,
      2,
      4,
      8,
      16,
      32,
      64,
      128
  };

  int value = 3;
  int n_bits = 4;
  int twos_complement = (value ^ ( _powers[n_bits]-1)) + 1;

我在Reddit上读到jng的一篇精彩的解释,用里程表做类比。

It is a useful convention. The same circuits and logic operations that add / subtract positive numbers in binary still work on both positive and negative numbers if using the convention, that's why it's so useful and omnipresent. Imagine the odometer of a car, it rolls around at (say) 99999. If you increment 00000 you get 00001. If you decrement 00000, you get 99999 (due to the roll-around). If you add one back to 99999 it goes back to 00000. So it's useful to decide that 99999 represents -1. Likewise, it is very useful to decide that 99998 represents -2, and so on. You have to stop somewhere, and also by convention, the top half of the numbers are deemed to be negative (50000-99999), and the bottom half positive just stand for themselves (00000-49999). As a result, the top digit being 5-9 means the represented number is negative, and it being 0-4 means the represented is positive - exactly the same as the top bit representing sign in a two's complement binary number. Understanding this was hard for me too. Once I got it and went back to re-read the books articles and explanations (there was no internet back then), it turned out a lot of those describing it didn't really understand it. I did write a book teaching assembly language after that (which did sell quite well for 10 years).