我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

让我们用8位的二进制形式得到答案10 - 12: 我们要做的是10 + (-12)

我们需要用12的恭维部分减去10。 12的二进制值是00001100。 10的二进制值是00001010。

为了得到12的赞美部分,我们只需要把所有的位反转,然后加1。 12的二进制反转是11110011。这也是逆码(一个人的补码)。 现在我们需要加一个,现在是11110100。

所以11110100是12的赞美!这样想很简单。

现在你可以用二进制形式来解决上面的10 - 12问题了。

00001010
11110100
-----------------
11111110  

其他回答

你也可以使用在线计算器来计算一个十进制数的补二表示:http://www.convertforfree.com/twos-complement-calculator/

2的补码对于查找二进制值非常有用,但是我想到了一个更简洁的方法来解决这样的问题(从未见过其他人发布它):

以二进制为例:1101(假设空格“1”是符号)等于-3。

使用2的补码,我们可以这样做…翻1101到0010…加上0001 + 0010 ===>得到0011。0011的正二进制= 3。因此1101 = -3!

我意识到:

而不是所有的翻转和加法,你可以只做一个基本的方法来解决正二进制(假设0101)是(23 * 0)+(22 * 1)+(21 * 0)+(20 * 1)= 5。

用否定句做同样的概念!(稍微扭曲一下)

以1101为例:

对于第一个数字,用-(23 * 1)= -8代替23 * 1 = 8。

然后像往常一样,做-8 + (22 * 1)+ (21 * 0)+ (20 * 1)= -3

想象一下,你有有限数量的比特/比特/数字等等。将0定义为所有数字都为0,并自然向上计数:

00
01
02
..

最终你会溢出。

98
99
00

我们有两位数字,可以表示从0到100的所有数字。所有这些数字都是正数!假设我们也想表示负数?

我们真正拥有的是一个循环。2之前的数字是1。1之前的数字是0。0之前的数字是…99.

为了简单起见,我们设任何大于50的数都是负数。0 ~ 49代表0 ~ 49。“99”是-1,“98”是-2,…“50”是-50。

这个表示是十的补数。计算机通常使用2的补码,除了使用位而不是数字之外,它是一样的。

10的补数的好处在于加法运算可以正常进行。你不需要做任何特殊的加法和负数!

Two的补码是一种存储整数的聪明方法,因此常见的数学问题很容易实现。

为了理解,你必须把数字想象成二进制。

它基本上是说,

对于0,用所有的0。 对于正整数,开始计数,最大值为2(位数-1)-1。 对于负整数,做完全相同的事情,但是切换0和1的角色并开始倒数(所以不是从0000开始,而是从1111开始——这是“补”部分)。

让我们尝试一个4位的迷你字节(我们称之为1/2个字节)。

0000 -零 0001 - 1 0010 - 2 0011 - 3 0100到0111,4点到7点

这是我们目前能找到的阳性结果。23-1 = 7。

负面影响:

1111 - 1 1110 - 2 1101 - 3 1100到1000 - - 4到- 8

注意,负数(1000 = -8)有一个额外的值,而正数没有。这是因为0000用于表示零。这可以看作是计算机的数轴。

区分正数和负数

这样一来,第一个位就扮演了“符号”位的角色,因为它可以用来区分非负的十进制值和负的十进制值。如果最高有效位是1,那么二进制就可以说是负的,如果最高有效位(最左边)是0,就可以说十进制值是非负的。

“符号量级”的负数只是将它们的正数对应的符号位颠倒了,但这种方法必须处理将1000(一个1后面跟着所有的0)解释为“负零”,这是令人困惑的。

“1的补”负数只是它们的正数的位补,这也导致了“负零”和1111(都是1)的混淆。

除非你的工作非常接近硬件,否则你可能不需要处理个位补或符号幅度整数表示。

这是一种对负整数进行编码的聪明方法,该方法将数据类型中大约一半的位组合保留给负整数,并且将大多数负整数与其对应的正整数相加会导致进位溢出,使结果为二进制零。

因此,在2的补码中,如果1是0x0001,那么-1是0x1111,因为这将导致0x0000的组合和(溢出1)。