我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

我喜欢lavinio的回答,但变换部分增加了一些复杂性。通常情况下,可以选择在保留符号位的情况下移动位,或者不保留符号位。这是将数字处理为有符号数字(-8到7表示小块,-128到127表示字节)或全范围无符号数字(0到15表示小块,0到255表示字节)之间的选择。

其他回答

按位补一个数就是将其中的所有位翻转。对2的补位,我们翻转所有的位,加1。

对有符号整数使用2的补码表示,我们应用2的补码操作将正数转换为负数,反之亦然。因此,以nibbles为例,0001(1)变成1111(-1),并再次应用该操作,返回0001。

零处操作的行为有利于给出零的单一表示,而无需特别处理正零和负零。0000与1111互补,当1111加1时。溢出到0000,得到一个0,而不是一个正1和一个负1。

这种表示的一个关键优点是,用于无符号整数的标准加法电路在应用于它们时产生正确的结果。例如,在nibbles中添加1和-1:0001 + 1111,比特溢出寄存器,留下0000。

作为一个温和的介绍,优秀的Computerphile制作了一个关于这个主题的视频。

2's complement is essentially a way of coming up with the additive inverse of a binary number. Ask yourself this: Given a number in binary form (present at a fixed length memory location), what bit pattern, when added to the original number (at the fixed length memory location), would make the result all zeros ? (at the same fixed length memory location). If we could come up with this bit pattern then that bit pattern would be the -ve representation (additive inverse) of the original number; as by definition adding a number to its additive inverse always results in zero. Example: take 5 which is 101 present inside a single 8 bit byte. Now the task is to come up with a bit pattern which when added to the given bit pattern (00000101) would result in all zeros at the memory location which is used to hold this 5 i.e. all 8 bits of the byte should be zero. To do that, start from the right most bit of 101 and for each individual bit, again ask the same question: What bit should I add to the current bit to make the result zero ? continue doing that taking in account the usual carry over. After we are done with the 3 right most places (the digits that define the original number without regard to the leading zeros) the last carry goes in the bit pattern of the additive inverse. Furthermore, since we are holding in the original number in a single 8 bit byte, all other leading bits in the additive inverse should also be 1's so that (and this is important) when the computer adds "the number" (represented using the 8 bit pattern) and its additive inverse using "that" storage type (a byte) the result in that byte would be all zeros.

 1 1 1
 ----------
   1 0 1
 1 0 1 1 ---> additive inverse
  ---------
   0 0 0

2的补码是表示负数的一种方式,大多数控制器和处理器都以2的补码形式存储负数。

最简单的答案:

1111 + 1 =(1)0000。所以1111一定是-1。那么-1 + 1 = 0。

理解这些对我来说是完美的。

问题是“什么是“2的补码”?”

对于那些想要从理论上理解它的人(以及我试图补充其他更实际的答案),简单的答案是:2的补码是对偶系统中不需要额外字符(如+和-)的负整数的表示。