我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

到目前为止,许多答案都很好地解释了为什么2的补数被用来表示负数,但没有告诉我们2的补数是什么,尤其是没有告诉我们为什么加了一个“1”,而且实际上经常以错误的方式加。

这种混淆来自于对补数定义的不理解。补语是指使某物完整的缺失部分。

根据定义,n位数x以b为基数的基数补是b^n-x。

在二进制中,4由100表示,它有3位数字(n=3)和基数2 (b=2)。所以它的基数补是b^n-x = 2^3-4=8-4=4(或二进制的100)。

然而,在二进制中,求一个基数的补并不像求它的消简基数补那么容易,消简基数补定义为(b^n-1)-y,只比基数补小1。要得到一个减少的基数补,只需翻转所有的数字。

100 -> 011(减基数补位)

为了得到基数(2的)补,我们只需按定义加1。

011 +1 ->100(2的补码)。

现在,有了这个新的理解,让我们看看Vincent Ramdhanie给出的例子(见上面的第二个回答):

将1111转换为十进制: 这个数从1开始,所以它是负的,所以我们找到1111的补数,也就是0000。 0000加上1,得到0001。 将0001转换为十进制,即1。 应用符号= -1。 大作。

应理解为:

数字从1开始,所以是负的。所以我们知道它是x的一个2的补。为了找到由它的2的补表示的x,我们首先需要找到它的1的补。

x的2的补数是1111 x的补数:1111-1 ->1110; X = 0001,(翻转所有数字)

应用符号-,结果=-x =-1。

其他回答

这是一种对负整数进行编码的聪明方法,该方法将数据类型中大约一半的位组合保留给负整数,并且将大多数负整数与其对应的正整数相加会导致进位溢出,使结果为二进制零。

因此,在2的补码中,如果1是0x0001,那么-1是0x1111,因为这将导致0x0000的组合和(溢出1)。

2的补语:当我们用一个数字的1的补语加一个额外的1时,我们将得到2的补语。例如:100101,它的1的补足是011010和2的补足是011010+1 = 011011(通过与1的补足相加) 本文以图解的方式对此进行了解释。

两人的补足(托马斯·芬利)

我把所有位的倒数加1。编程:

  // In C++11
  int _powers[] = {
      1,
      2,
      4,
      8,
      16,
      32,
      64,
      128
  };

  int value = 3;
  int n_bits = 4;
  int twos_complement = (value ^ ( _powers[n_bits]-1)) + 1;

到目前为止,许多答案都很好地解释了为什么2的补数被用来表示负数,但没有告诉我们2的补数是什么,尤其是没有告诉我们为什么加了一个“1”,而且实际上经常以错误的方式加。

这种混淆来自于对补数定义的不理解。补语是指使某物完整的缺失部分。

根据定义,n位数x以b为基数的基数补是b^n-x。

在二进制中,4由100表示,它有3位数字(n=3)和基数2 (b=2)。所以它的基数补是b^n-x = 2^3-4=8-4=4(或二进制的100)。

然而,在二进制中,求一个基数的补并不像求它的消简基数补那么容易,消简基数补定义为(b^n-1)-y,只比基数补小1。要得到一个减少的基数补,只需翻转所有的数字。

100 -> 011(减基数补位)

为了得到基数(2的)补,我们只需按定义加1。

011 +1 ->100(2的补码)。

现在,有了这个新的理解,让我们看看Vincent Ramdhanie给出的例子(见上面的第二个回答):

将1111转换为十进制: 这个数从1开始,所以它是负的,所以我们找到1111的补数,也就是0000。 0000加上1,得到0001。 将0001转换为十进制,即1。 应用符号= -1。 大作。

应理解为:

数字从1开始,所以是负的。所以我们知道它是x的一个2的补。为了找到由它的2的补表示的x,我们首先需要找到它的1的补。

x的2的补数是1111 x的补数:1111-1 ->1110; X = 0001,(翻转所有数字)

应用符号-,结果=-x =-1。

我在Reddit上读到jng的一篇精彩的解释,用里程表做类比。

It is a useful convention. The same circuits and logic operations that add / subtract positive numbers in binary still work on both positive and negative numbers if using the convention, that's why it's so useful and omnipresent. Imagine the odometer of a car, it rolls around at (say) 99999. If you increment 00000 you get 00001. If you decrement 00000, you get 99999 (due to the roll-around). If you add one back to 99999 it goes back to 00000. So it's useful to decide that 99999 represents -1. Likewise, it is very useful to decide that 99998 represents -2, and so on. You have to stop somewhere, and also by convention, the top half of the numbers are deemed to be negative (50000-99999), and the bottom half positive just stand for themselves (00000-49999). As a result, the top digit being 5-9 means the represented number is negative, and it being 0-4 means the represented is positive - exactly the same as the top bit representing sign in a two's complement binary number. Understanding this was hard for me too. Once I got it and went back to re-read the books articles and explanations (there was no internet back then), it turned out a lot of those describing it didn't really understand it. I did write a book teaching assembly language after that (which did sell quite well for 10 years).