我在上一门计算机系统课程,在某种程度上,我一直在为“二的补充”而挣扎。我想了解它,但我所读到的一切并没有让我明白它的含义。我读过维基百科的文章和其他各种文章,包括我的课本。

什么是2的补数,我们如何使用它,它如何在强制转换(从有符号到无符号,反之亦然)、逐位操作和位移位操作等操作中影响数字?


当前回答

到目前为止,许多答案都很好地解释了为什么2的补数被用来表示负数,但没有告诉我们2的补数是什么,尤其是没有告诉我们为什么加了一个“1”,而且实际上经常以错误的方式加。

这种混淆来自于对补数定义的不理解。补语是指使某物完整的缺失部分。

根据定义,n位数x以b为基数的基数补是b^n-x。

在二进制中,4由100表示,它有3位数字(n=3)和基数2 (b=2)。所以它的基数补是b^n-x = 2^3-4=8-4=4(或二进制的100)。

然而,在二进制中,求一个基数的补并不像求它的消简基数补那么容易,消简基数补定义为(b^n-1)-y,只比基数补小1。要得到一个减少的基数补,只需翻转所有的数字。

100 -> 011(减基数补位)

为了得到基数(2的)补,我们只需按定义加1。

011 +1 ->100(2的补码)。

现在,有了这个新的理解,让我们看看Vincent Ramdhanie给出的例子(见上面的第二个回答):

将1111转换为十进制: 这个数从1开始,所以它是负的,所以我们找到1111的补数,也就是0000。 0000加上1,得到0001。 将0001转换为十进制,即1。 应用符号= -1。 大作。

应理解为:

数字从1开始,所以是负的。所以我们知道它是x的一个2的补。为了找到由它的2的补表示的x,我们首先需要找到它的1的补。

x的2的补数是1111 x的补数:1111-1 ->1110; X = 0001,(翻转所有数字)

应用符号-,结果=-x =-1。

其他回答

想象一下,你有有限数量的比特/比特/数字等等。将0定义为所有数字都为0,并自然向上计数:

00
01
02
..

最终你会溢出。

98
99
00

我们有两位数字,可以表示从0到100的所有数字。所有这些数字都是正数!假设我们也想表示负数?

我们真正拥有的是一个循环。2之前的数字是1。1之前的数字是0。0之前的数字是…99.

为了简单起见,我们设任何大于50的数都是负数。0 ~ 49代表0 ~ 49。“99”是-1,“98”是-2,…“50”是-50。

这个表示是十的补数。计算机通常使用2的补码,除了使用位而不是数字之外,它是一样的。

10的补数的好处在于加法运算可以正常进行。你不需要做任何特殊的加法和负数!

我喜欢lavinio的回答,但变换部分增加了一些复杂性。通常情况下,可以选择在保留符号位的情况下移动位,或者不保留符号位。这是将数字处理为有符号数字(-8到7表示小块,-128到127表示字节)或全范围无符号数字(0到15表示小块,0到255表示字节)之间的选择。

我在Reddit上读到jng的一篇精彩的解释,用里程表做类比。

It is a useful convention. The same circuits and logic operations that add / subtract positive numbers in binary still work on both positive and negative numbers if using the convention, that's why it's so useful and omnipresent. Imagine the odometer of a car, it rolls around at (say) 99999. If you increment 00000 you get 00001. If you decrement 00000, you get 99999 (due to the roll-around). If you add one back to 99999 it goes back to 00000. So it's useful to decide that 99999 represents -1. Likewise, it is very useful to decide that 99998 represents -2, and so on. You have to stop somewhere, and also by convention, the top half of the numbers are deemed to be negative (50000-99999), and the bottom half positive just stand for themselves (00000-49999). As a result, the top digit being 5-9 means the represented number is negative, and it being 0-4 means the represented is positive - exactly the same as the top bit representing sign in a two's complement binary number. Understanding this was hard for me too. Once I got it and went back to re-read the books articles and explanations (there was no internet back then), it turned out a lot of those describing it didn't really understand it. I did write a book teaching assembly language after that (which did sell quite well for 10 years).

2对给定数的补数是1与1的补数相加得到的数。

假设我们有一个二进制数:10111001101

它的1的补位是:01000110010

它的2的补数是:01000110011

按位补一个数就是将其中的所有位翻转。对2的补位,我们翻转所有的位,加1。

对有符号整数使用2的补码表示,我们应用2的补码操作将正数转换为负数,反之亦然。因此,以nibbles为例,0001(1)变成1111(-1),并再次应用该操作,返回0001。

零处操作的行为有利于给出零的单一表示,而无需特别处理正零和负零。0000与1111互补,当1111加1时。溢出到0000,得到一个0,而不是一个正1和一个负1。

这种表示的一个关键优点是,用于无符号整数的标准加法电路在应用于它们时产生正确的结果。例如,在nibbles中添加1和-1:0001 + 1111,比特溢出寄存器,留下0000。

作为一个温和的介绍,优秀的Computerphile制作了一个关于这个主题的视频。