根据Learning Spark
请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。
我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。
如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?
根据Learning Spark
请记住,重新划分数据是一项相当昂贵的操作。 Spark还有一个repartition()的优化版本,称为coalesce(),它允许避免数据移动,但仅当您正在减少RDD分区的数量时。
我得到的一个区别是,使用repartition()可以增加/减少分区的数量,但使用coalesce()只能减少分区的数量。
如果分区分布在多台机器上,并且运行了coalesce(),它如何避免数据移动?
当前回答
对于那些从PySpark (AWS EMR)生成单个csv文件并将其保存在s3上的问题,使用重新分区会有所帮助。原因是,合并不能进行完全洗牌,但重新分区可以。从本质上讲,您可以使用重分区增加或减少分区的数量,但使用合并只能减少分区的数量(而不是1)。以下是为试图从AWS EMR写入csv到s3的任何人编写的代码:
df.repartition(1).write.format('csv')\
.option("path", "s3a://my.bucket.name/location")\
.save(header = 'true')
其他回答
重分区:将数据移到新的分区中。
如。初始数据帧划分为200个分区。
df.repartition(500):数据将从200个分区重新排列到新的500个分区。
联合:将数据移到现有的分区中。
df.coalesce(5):数据将从剩余的195个分区转移到5个现有分区。
我想在贾斯汀和鲍尔的回答中补充一点——
重新分区将忽略现有分区并创建新分区。所以你可以用它来修复数据倾斜。您可以使用分区键来定义分布。数据倾斜是“大数据”问题空间中最大的问题之一。
Coalesce将使用现有分区并对其中的一个子集进行洗牌。它不能像重新分区那样修复数据倾斜。因此,即使它更便宜,它也可能不是你需要的东西。
有一个重分区>>合并的用例,即使在@Rob的回答中提到的分区号减少,也就是将数据写入单个文件。
@Rob的回答暗示了一个好的方向,但我认为需要一些进一步的解释来理解引擎盖下面发生了什么。
如果您需要在写入数据之前过滤数据,那么重新分区比coalesce更适合,因为coalesce将在加载操作之前下推。
例如: load () . map(…).filter(…).coalesce (1) .save ()
翻译: load () .coalesce (1) . map(…).filter(…).save ()
这意味着您的所有数据将被压缩到一个单独的分区中,在那里它将被过滤,失去所有的并行性。 这种情况甚至会发生在非常简单的过滤器,如column='value'。
load().map(…).filter(…).repartition(1).save()
在这种情况下,在原始分区上并行地进行过滤。
举个数量级的例子,在我的例子中,当从Hive表加载后过滤109M行(~105G)和~1000个分区时,运行时从合并(1)的~6h下降到重新分区(1)的~2m。
具体示例取自AirBnB的这篇文章,这篇文章非常好,甚至涵盖了Spark中重新分区技术的更多方面。
它避免了完全洗牌。如果已知分区数量正在减少,则执行器可以安全地将数据保存在最小分区数量上,只将数据从额外的节点移到我们保留的节点上。
所以,它会是这样的:
Node 1 = 1,2,3
Node 2 = 4,5,6
Node 3 = 7,8,9
Node 4 = 10,11,12
然后合并到2个分区:
Node 1 = 1,2,3 + (10,11,12)
Node 3 = 7,8,9 + (4,5,6)
注意,节点1和节点3不需要移动其原始数据。
以下是代码级别的一些额外细节/差异:
在这里只添加函数定义,完整的代码实现检查spark的github页面。
下面是在数据帧上重新分区的不同方法: 点击这里查看完整实现。
def repartition(numPartitions: Int): Dataset[T]
每当我们在dataframe上调用上述方法时,它都会返回一个新的数据集,该数据集恰好有numPartitions分区。
def repartition(numPartitions: Int, partitionExprs: Column*): Dataset[T]
上述方法返回一个新的数据集,该数据集由给定的分区表达式划分为numPartitions。生成的数据集是哈希分区的。
def repartition(partitionExprs: Column*): Dataset[T]
上面的方法返回一个新的数据集,由给定的分区表达式划分,使用spark.sql.shuffle.partitions作为分区数。生成的数据集是哈希分区的。
def repartitionByRange(numPartitions: Int, partitionExprs: Column*): Dataset[T]
上述方法返回一个新的数据集,该数据集由给定的分区表达式划分为numPartitions。生成的数据集是范围分区的。
def repartitionByRange(partitionExprs: Column*): Dataset[T]
上面的方法返回一个新的数据集,由给定的分区表达式划分,使用spark.sql.shuffle.partitions作为分区数。生成的数据集是范围分区的。
但是对于合并,我们只有以下方法在数据框架上:
def coalesce(numPartitions: Int): Dataset[T]
上述方法将返回一个新的数据集,该数据集恰好有numPartitions分区
下面是RDD上可用于重分区和合并的方法: 点击这里查看完整实现。
def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
基本上,重分区方法通过将shuffle值传递为true来调用合并方法。 现在如果我们在RDD上使用coalesce方法,通过传递shuffle值为true,我们也可以增加分区!