我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

def partition(pred, seq):
  return reduce( lambda (yes, no), x: (yes+[x], no) if pred(x) else (yes, no+[x]), seq, ([], []) )

其他回答

bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]

append返回None,所以它可以工作。

itertools。Groupby几乎可以满足您的要求,除了它要求对条目进行排序以确保您获得一个连续的范围之外,因此您需要首先根据键进行排序(否则您将为每种类型获得多个交错的组)。如。

def is_good(f):
    return f[2].lower() in IMAGE_TYPES

files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi'), ('file3.gif', 123L, '.gif')]

for key, group in itertools.groupby(sorted(files, key=is_good), key=is_good):
    print key, list(group)

给:

False [('file2.avi', 999L, '.avi')]
True [('file1.jpg', 33L, '.jpg'), ('file3.gif', 123L, '.gif')]

与其他解决方案类似,可以将键func定义为任意数量的组。

我转向numpy来解决这个问题,以限制行数,并使其成为一个简单的函数。

我能够得到一个条件满足,将一个列表分为两个,使用np。在哪里分离出一个列表。这适用于数字,但这可以扩展使用字符串和列表,我相信。

在这儿……

from numpy import where as wh, array as arr

midz = lambda a, mid: (a[wh(a > mid)], a[wh((a =< mid))])
p_ = arr([i for i in [75, 50, 403, 453, 0, 25, 428] if i])
high,low = midz(p_, p_.mean())
images = [f for f in files if f[2].lower() in IMAGE_TYPES]
anims  = [f for f in files if f not in images]

当条件较长时很好,例如在您的示例中。读者不需要弄清楚否定条件以及它是否适用于所有其他情况。

如果你不想用两行代码来完成一个语义只需要一次的操作,你可以把上面的一些方法(甚至是你自己的方法)包装在一个函数中:

def part_with_predicate(l, pred):
    return [i for i in l if pred(i)], [i for i in l if not pred(i)]

这不是一种惰性计算方法,它确实对列表进行了两次迭代,但是它允许您在一行代码中对列表进行分区。