我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

def partition(pred, seq):
  return reduce( lambda (yes, no), x: (yes+[x], no) if pred(x) else (yes, no+[x]), seq, ([], []) )

其他回答

有时候,列表理解并不是最好的选择!

我根据人们对这个话题的回答做了一个小测试,在一个随机生成的列表上测试。以下是列表的生成(可能有更好的方法,但这不是重点):

good_list = ('.jpg','.jpeg','.gif','.bmp','.png')

import random
import string
my_origin_list = []
for i in xrange(10000):
    fname = ''.join(random.choice(string.lowercase) for i in range(random.randrange(10)))
    if random.getrandbits(1):
        fext = random.choice(good_list)
    else:
        fext = "." + ''.join(random.choice(string.lowercase) for i in range(3))

    my_origin_list.append((fname + fext, random.randrange(1000), fext))

好了

# Parand
def f1():
    return [e for e in my_origin_list if e[2] in good_list], [e for e in my_origin_list if not e[2] in good_list]

# dbr
def f2():
    a, b = list(), list()
    for e in my_origin_list:
        if e[2] in good_list:
            a.append(e)
        else:
            b.append(e)
    return a, b

# John La Rooy
def f3():
    a, b = list(), list()
    for e in my_origin_list:
        (b, a)[e[2] in good_list].append(e)
    return a, b

# Ants Aasma
def f4():
    l1, l2 = tee((e[2] in good_list, e) for e in my_origin_list)
    return [i for p, i in l1 if p], [i for p, i in l2 if not p]

# My personal way to do
def f5():
    a, b = zip(*[(e, None) if e[2] in good_list else (None, e) for e in my_origin_list])
    return list(filter(None, a)), list(filter(None, b))

# BJ Homer
def f6():
    return filter(lambda e: e[2] in good_list, my_origin_list), filter(lambda e: not e[2] in good_list, my_origin_list)

使用cmpthese函数,最好的结果是dbr答案:

f1     204/s  --    -5%   -14%   -15%   -20%   -26%
f6     215/s     6%  --    -9%   -11%   -16%   -22%
f3     237/s    16%    10%  --    -2%    -7%   -14%
f4     240/s    18%    12%     2%  --    -6%   -13%
f5     255/s    25%    18%     8%     6%  --    -8%
f2     277/s    36%    29%    17%    15%     9%  --

我转向numpy来解决这个问题,以限制行数,并使其成为一个简单的函数。

我能够得到一个条件满足,将一个列表分为两个,使用np。在哪里分离出一个列表。这适用于数字,但这可以扩展使用字符串和列表,我相信。

在这儿……

from numpy import where as wh, array as arr

midz = lambda a, mid: (a[wh(a > mid)], a[wh((a =< mid))])
p_ = arr([i for i in [75, 50, 403, 453, 0, 25, 428] if i])
high,low = midz(p_, p_.mean())

itertools。Groupby几乎可以满足您的要求,除了它要求对条目进行排序以确保您获得一个连续的范围之外,因此您需要首先根据键进行排序(否则您将为每种类型获得多个交错的组)。如。

def is_good(f):
    return f[2].lower() in IMAGE_TYPES

files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi'), ('file3.gif', 123L, '.gif')]

for key, group in itertools.groupby(sorted(files, key=is_good), key=is_good):
    print key, list(group)

给:

False [('file2.avi', 999L, '.avi')]
True [('file1.jpg', 33L, '.jpg'), ('file3.gif', 123L, '.gif')]

与其他解决方案类似,可以将键func定义为任意数量的组。

如果你不介意使用一个外部库,有两个我知道本机实现这个操作:

>>> files = [ ('file1.jpg', 33, '.jpg'), ('file2.avi', 999, '.avi')]
>>> IMAGE_TYPES = ('.jpg','.jpeg','.gif','.bmp','.png')

iteration_utilities.partition: >>> from iteration_utilities import partition >>> notimages, images = partition(files, lambda x: x[2].lower() in IMAGE_TYPES) >>> notimages [('file2.avi', 999, '.avi')] >>> images [('file1.jpg', 33, '.jpg')] more_itertools.partition >>> from more_itertools import partition >>> notimages, images = partition(lambda x: x[2].lower() in IMAGE_TYPES, files) >>> list(notimages) # returns a generator so you need to explicitly convert to list. [('file2.avi', 999, '.avi')] >>> list(images) [('file1.jpg', 33, '.jpg')]

例如,按偶数和奇数拆分列表

arr = range(20)
even, odd = reduce(lambda res, next: res[next % 2].append(next) or res, arr, ([], []))

或者概括地说:

def split(predicate, iterable):
    return reduce(lambda res, e: res[predicate(e)].append(e) or res, iterable, ([], []))

优点:

最短路径 Predicate对每个元素只应用一次

缺点

需要函数式编程范例的知识