我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
我转向numpy来解决这个问题,以限制行数,并使其成为一个简单的函数。
我能够得到一个条件满足,将一个列表分为两个,使用np。在哪里分离出一个列表。这适用于数字,但这可以扩展使用字符串和列表,我相信。
在这儿……
from numpy import where as wh, array as arr
midz = lambda a, mid: (a[wh(a > mid)], a[wh((a =< mid))])
p_ = arr([i for i in [75, 50, 403, 453, 0, 25, 428] if i])
high,low = midz(p_, p_.mean())
其他回答
如果你不想用两行代码来完成一个语义只需要一次的操作,你可以把上面的一些方法(甚至是你自己的方法)包装在一个函数中:
def part_with_predicate(l, pred):
return [i for i in l if pred(i)], [i for i in l if not pred(i)]
这不是一种惰性计算方法,它确实对列表进行了两次迭代,但是它允许您在一行代码中对列表进行分区。
我转向numpy来解决这个问题,以限制行数,并使其成为一个简单的函数。
我能够得到一个条件满足,将一个列表分为两个,使用np。在哪里分离出一个列表。这适用于数字,但这可以扩展使用字符串和列表,我相信。
在这儿……
from numpy import where as wh, array as arr
midz = lambda a, mid: (a[wh(a > mid)], a[wh((a =< mid))])
p_ = arr([i for i in [75, 50, 403, 453, 0, 25, 428] if i])
high,low = midz(p_, p_.mean())
我基本上喜欢安德斯的方法,因为它非常普遍。下面的版本将分类器放在前面(以匹配过滤器语法),并使用defaultdict(假定已导入)。
def categorize(func, seq):
"""Return mapping from categories to lists
of categorized items.
"""
d = defaultdict(list)
for item in seq:
d[func(item)].append(item)
return d
这是这个问题的另一个解决方案。我需要一个尽可能快的解决方案。这意味着只对列表进行一次迭代,并且最好是O(1)用于向结果列表之一添加数据。这与sastanin提供的解决方案非常相似,只是更短:
from collections import deque
def split(iterable, function):
dq_true = deque()
dq_false = deque()
# deque - the fastest way to consume an iterator and append items
deque((
(dq_true if function(item) else dq_false).append(item) for item in iterable
), maxlen=0)
return dq_true, dq_false
此时,可以按照如下方式使用该函数:
lower, higher = split([0,1,2,3,4,5,6,7,8,9], lambda x: x < 5)
selected, other = split([0,1,2,3,4,5,6,7,8,9], lambda x: x in {0,4,9})
如果你对结果的deque对象不满意,你可以很容易地将其转换为list、set或任何你喜欢的对象(例如list(lower))。转换要快得多,直接构建列表。
该方法保持项目的顺序,以及任何副本。
例如,按偶数和奇数拆分列表
arr = range(20)
even, odd = reduce(lambda res, next: res[next % 2].append(next) or res, arr, ([], []))
或者概括地说:
def split(predicate, iterable):
return reduce(lambda res, e: res[predicate(e)].append(e) or res, iterable, ([], []))
优点:
最短路径 Predicate对每个元素只应用一次
缺点
需要函数式编程范例的知识