我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
这是这个问题的另一个解决方案。我需要一个尽可能快的解决方案。这意味着只对列表进行一次迭代,并且最好是O(1)用于向结果列表之一添加数据。这与sastanin提供的解决方案非常相似,只是更短:
from collections import deque
def split(iterable, function):
dq_true = deque()
dq_false = deque()
# deque - the fastest way to consume an iterator and append items
deque((
(dq_true if function(item) else dq_false).append(item) for item in iterable
), maxlen=0)
return dq_true, dq_false
此时,可以按照如下方式使用该函数:
lower, higher = split([0,1,2,3,4,5,6,7,8,9], lambda x: x < 5)
selected, other = split([0,1,2,3,4,5,6,7,8,9], lambda x: x in {0,4,9})
如果你对结果的deque对象不满意,你可以很容易地将其转换为list、set或任何你喜欢的对象(例如list(lower))。转换要快得多,直接构建列表。
该方法保持项目的顺序,以及任何副本。
其他回答
第一步(pre-OP-edit):使用集合:
mylist = [1,2,3,4,5,6,7]
goodvals = [1,3,7,8,9]
myset = set(mylist)
goodset = set(goodvals)
print list(myset.intersection(goodset)) # [1, 3, 7]
print list(myset.difference(goodset)) # [2, 4, 5, 6]
这对可读性(IMHO)和性能都有好处。
第二步(post-OP-edit):
创建一个好的扩展列表:
IMAGE_TYPES = set(['.jpg','.jpeg','.gif','.bmp','.png'])
这将提高性能。否则,你现在的情况在我看来还不错。
就我个人而言,我喜欢你引用的版本,假设你已经有了一个好的列表。如果没有,就像这样:
good = filter(lambda x: is_good(x), mylist)
bad = filter(lambda x: not is_good(x), mylist)
当然,这真的非常类似于使用列表理解,就像你最初做的,但用一个函数而不是一个查找:
good = [x for x in mylist if is_good(x)]
bad = [x for x in mylist if not is_good(x)]
总的来说,我发现列表推导式的美学非常令人满意。当然,如果您实际上不需要保留顺序,也不需要重复,那么在集合上使用交集和差分方法也会很好。
这是这个问题的另一个解决方案。我需要一个尽可能快的解决方案。这意味着只对列表进行一次迭代,并且最好是O(1)用于向结果列表之一添加数据。这与sastanin提供的解决方案非常相似,只是更短:
from collections import deque
def split(iterable, function):
dq_true = deque()
dq_false = deque()
# deque - the fastest way to consume an iterator and append items
deque((
(dq_true if function(item) else dq_false).append(item) for item in iterable
), maxlen=0)
return dq_true, dq_false
此时,可以按照如下方式使用该函数:
lower, higher = split([0,1,2,3,4,5,6,7,8,9], lambda x: x < 5)
selected, other = split([0,1,2,3,4,5,6,7,8,9], lambda x: x in {0,4,9})
如果你对结果的deque对象不满意,你可以很容易地将其转换为list、set或任何你喜欢的对象(例如list(lower))。转换要快得多,直接构建列表。
该方法保持项目的顺序,以及任何副本。
我的看法。我提出一个惰性单次配分函数, 它保持输出子序列的相对顺序。
1. 需求
我认为这些要求是:
维护元素的相对顺序(因此,没有集合和 字典) 对于每个元素只计算condition一次(因此不使用 (i)筛选或分组) 允许任意一个序列的惰性消耗(如果我们能够负担得起的话) 预先计算它们,那么naïve实现很可能是 可接受)
2. 把图书馆
我的配分函数(下面介绍)和其他类似的函数 把它变成了一个小图书馆:
python-split
它通常可以通过PyPI安装:
pip install --user split
要根据条件拆分列表,使用partition函数:
>>> from split import partition
>>> files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi') ]
>>> image_types = ('.jpg','.jpeg','.gif','.bmp','.png')
>>> images, other = partition(lambda f: f[-1] in image_types, files)
>>> list(images)
[('file1.jpg', 33L, '.jpg')]
>>> list(other)
[('file2.avi', 999L, '.avi')]
3.配分函数说明
在内部,我们需要同时构建两个子序列,因此需要消耗 只有一个输出序列强制计算另一个输出序列 了。我们需要在用户请求之间保持状态(存储已处理) 但还没有请求的元素)。为了保持状态,我使用了两个双端 队列(双端队列):
from collections import deque
SplitSeq类负责内部管理:
class SplitSeq:
def __init__(self, condition, sequence):
self.cond = condition
self.goods = deque([])
self.bads = deque([])
self.seq = iter(sequence)
魔术发生在它的. getnext()方法中。就像。next() 的迭代器,但允许指定我们想要的元素类型 这一次。在幕后,它并没有丢弃被拒绝的元素, 而是把它们放在两个队列中的一个:
def getNext(self, getGood=True):
if getGood:
these, those, cond = self.goods, self.bads, self.cond
else:
these, those, cond = self.bads, self.goods, lambda x: not self.cond(x)
if these:
return these.popleft()
else:
while 1: # exit on StopIteration
n = self.seq.next()
if cond(n):
return n
else:
those.append(n)
最终用户应该使用配分函数。它需要 条件函数和序列(就像映射或过滤器),以及 返回两个生成器。的子序列 元素,则第二个元素将构建 互补的子序列。迭代器和生成器允许延迟 偶长序列或无限序列的分裂。
def partition(condition, sequence):
cond = condition if condition else bool # evaluate as bool if condition == None
ss = SplitSeq(cond, sequence)
def goods():
while 1:
yield ss.getNext(getGood=True)
def bads():
while 1:
yield ss.getNext(getGood=False)
return goods(), bads()
为了方便起见,我选择test函数作为第一个参数 将来的部分应用(类似于如何映射和过滤 将test函数作为第一个参数)。
为了提高性能,请尝试itertools。
itertools模块标准化了一组快速、内存高效的核心工具,这些工具单独使用或组合使用都很有用。它们一起构成了一个“迭代器代数”,使得用纯Python简洁有效地构造专门的工具成为可能。
出现看到itertools。过滤器或imap。
itertools。iterable ifilter(谓词) 创建一个迭代器,从iterable中过滤元素,只返回谓词为True的元素