我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
我有这样的代码:
good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]
目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。
我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?
当前回答
我将采用2步方法,将谓词的求值与列表的过滤分离:
def partition(pred, iterable):
xs = list(zip(map(pred, iterable), iterable))
return [x[1] for x in xs if x[0]], [x[1] for x in xs if not x[0]]
就性能而言(除了在iterable的每个成员上只对pred求值一次之外),这样做的好处在于它将大量逻辑从解释器中移出,转移到高度优化的迭代和映射代码中。这可以加快长迭代对象的迭代速度,就像回答中描述的那样。
在表达性方面,它利用了像理解和映射这样的表达性习语。
其他回答
bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]
append返回None,所以它可以工作。
清晰快速
这个列表理解是简单的阅读和快速。这正是上级要求的。
set_good_vals = set(good_vals) # Speed boost.
good = [x for x in my_list if x in set_good_vals]
bad = [x for x in my_list if x not in set_good_vals]
我更喜欢一个列表理解而不是两个,但不像张贴的许多答案(其中一些相当巧妙),它是可读的和清晰的。这也是网页上最快的答案之一。
唯一(稍微)快一点的答案是:
set_good_vals = set(good_vals)
good, bad = [], []
for item in my_list:
_ = good.append(item) if item in set_good_vals else bad.append(item)
...还有它的变体。(见我的另一个答案)。但我觉得第一种方法更优雅,而且几乎一样快。
第一步(pre-OP-edit):使用集合:
mylist = [1,2,3,4,5,6,7]
goodvals = [1,3,7,8,9]
myset = set(mylist)
goodset = set(goodvals)
print list(myset.intersection(goodset)) # [1, 3, 7]
print list(myset.difference(goodset)) # [2, 4, 5, 6]
这对可读性(IMHO)和性能都有好处。
第二步(post-OP-edit):
创建一个好的扩展列表:
IMAGE_TYPES = set(['.jpg','.jpeg','.gif','.bmp','.png'])
这将提高性能。否则,你现在的情况在我看来还不错。
就我个人而言,我喜欢你引用的版本,假设你已经有了一个好的列表。如果没有,就像这样:
good = filter(lambda x: is_good(x), mylist)
bad = filter(lambda x: not is_good(x), mylist)
当然,这真的非常类似于使用列表理解,就像你最初做的,但用一个函数而不是一个查找:
good = [x for x in mylist if is_good(x)]
bad = [x for x in mylist if not is_good(x)]
总的来说,我发现列表推导式的美学非常令人满意。当然,如果您实际上不需要保留顺序,也不需要重复,那么在集合上使用交集和差分方法也会很好。
例如,按偶数和奇数拆分列表
arr = range(20)
even, odd = reduce(lambda res, next: res[next % 2].append(next) or res, arr, ([], []))
或者概括地说:
def split(predicate, iterable):
return reduce(lambda res, e: res[predicate(e)].append(e) or res, iterable, ([], []))
优点:
最短路径 Predicate对每个元素只应用一次
缺点
需要函数式编程范例的知识