我有这样的代码:

good = [x for x in mylist if x in goodvals]
bad = [x for x in mylist if x not in goodvals]

目标是根据mylist的内容是否满足条件,将它们拆分为另外两个列表。

我怎样才能做得更优雅呢?我能避免在mylist上做两个单独的迭代吗?我可以通过这样做来提高性能吗?


当前回答

Good = [x for x in mylist if x in goodvals] Bad = [x for x in mylist if x not in goodvals] 我怎样才能做得更优雅呢?

代码已经非常优雅了。

使用集合可能会有轻微的性能改进,但差异是微不足道的。基于集合的方法也会丢弃重复项,并且不会保留元素的顺序。我发现列表理解也更容易阅读。

事实上,我们甚至可以更简单地使用for循环:

good, bad = [], []

for x in mylist:
    if x in goodvals:
        good.append(f)
    else:
        bad.append(f)

这种方法可以更容易地添加额外的逻辑。例如,代码很容易被修改为丢弃None值:

good, bad = [], []

for x in mylist:
    if x is None:
        continue
    if x in goodvals:
        good.append(f)
    else:
        bad.append(f)

其他回答

bad = []
good = [x for x in mylist if x in goodvals or bad.append(x)]

append返回None,所以它可以工作。

下面是惰性迭代器方法:

from itertools import tee

def split_on_condition(seq, condition):
    l1, l2 = tee((condition(item), item) for item in seq)
    return (i for p, i in l1 if p), (i for p, i in l2 if not p)

它对每个项计算一次条件,并返回两个生成器,第一个生成条件为真时序列中的值,另一个生成条件为假时序列中的值。

因为它是惰性的,你可以在任何迭代器上使用它,甚至是无限迭代器:

from itertools import count, islice

def is_prime(n):
    return n > 1 and all(n % i for i in xrange(2, n))

primes, not_primes = split_on_condition(count(), is_prime)
print("First 10 primes", list(islice(primes, 10)))
print("First 10 non-primes", list(islice(not_primes, 10)))

通常情况下,非惰性列表返回方法会更好:

def split_on_condition(seq, condition):
    a, b = [], []
    for item in seq:
        (a if condition(item) else b).append(item)
    return a, b

编辑:对于您更具体的用例,将项目按某些键分割到不同的列表中,这里有一个通用函数:

DROP_VALUE = lambda _:_
def split_by_key(seq, resultmapping, keyfunc, default=DROP_VALUE):
    """Split a sequence into lists based on a key function.

        seq - input sequence
        resultmapping - a dictionary that maps from target lists to keys that go to that list
        keyfunc - function to calculate the key of an input value
        default - the target where items that don't have a corresponding key go, by default they are dropped
    """
    result_lists = dict((key, []) for key in resultmapping)
    appenders = dict((key, result_lists[target].append) for target, keys in resultmapping.items() for key in keys)

    if default is not DROP_VALUE:
        result_lists.setdefault(default, [])
        default_action = result_lists[default].append
    else:
        default_action = DROP_VALUE

    for item in seq:
        appenders.get(keyfunc(item), default_action)(item)

    return result_lists

用法:

def file_extension(f):
    return f[2].lower()

split_files = split_by_key(files, {'images': IMAGE_TYPES}, keyfunc=file_extension, default='anims')
print split_files['images']
print split_files['anims']

手动迭代,使用条件选择每个元素将被追加到的列表:

good, bad = [], []
for x in mylist:
    (bad, good)[x in goodvals].append(x)

我的看法。我提出一个惰性单次配分函数, 它保持输出子序列的相对顺序。

1. 需求

我认为这些要求是:

维护元素的相对顺序(因此,没有集合和 字典) 对于每个元素只计算condition一次(因此不使用 (i)筛选或分组) 允许任意一个序列的惰性消耗(如果我们能够负担得起的话) 预先计算它们,那么naïve实现很可能是 可接受)

2. 把图书馆

我的配分函数(下面介绍)和其他类似的函数 把它变成了一个小图书馆:

python-split

它通常可以通过PyPI安装:

pip install --user split

要根据条件拆分列表,使用partition函数:

>>> from split import partition
>>> files = [ ('file1.jpg', 33L, '.jpg'), ('file2.avi', 999L, '.avi') ]
>>> image_types = ('.jpg','.jpeg','.gif','.bmp','.png')
>>> images, other = partition(lambda f: f[-1] in image_types, files)
>>> list(images)
[('file1.jpg', 33L, '.jpg')]
>>> list(other)
[('file2.avi', 999L, '.avi')]

3.配分函数说明

在内部,我们需要同时构建两个子序列,因此需要消耗 只有一个输出序列强制计算另一个输出序列 了。我们需要在用户请求之间保持状态(存储已处理) 但还没有请求的元素)。为了保持状态,我使用了两个双端 队列(双端队列):

from collections import deque

SplitSeq类负责内部管理:

class SplitSeq:
    def __init__(self, condition, sequence):
        self.cond = condition
        self.goods = deque([])
        self.bads = deque([])
        self.seq = iter(sequence)

魔术发生在它的. getnext()方法中。就像。next() 的迭代器,但允许指定我们想要的元素类型 这一次。在幕后,它并没有丢弃被拒绝的元素, 而是把它们放在两个队列中的一个:

    def getNext(self, getGood=True):
        if getGood:
            these, those, cond = self.goods, self.bads, self.cond
        else:
            these, those, cond = self.bads, self.goods, lambda x: not self.cond(x)
        if these:
            return these.popleft()
        else:
            while 1: # exit on StopIteration
                n = self.seq.next()
                if cond(n):
                    return n
                else:
                    those.append(n)

最终用户应该使用配分函数。它需要 条件函数和序列(就像映射或过滤器),以及 返回两个生成器。的子序列 元素,则第二个元素将构建 互补的子序列。迭代器和生成器允许延迟 偶长序列或无限序列的分裂。

def partition(condition, sequence):
    cond = condition if condition else bool  # evaluate as bool if condition == None
    ss = SplitSeq(cond, sequence)
    def goods():
        while 1:
            yield ss.getNext(getGood=True)
    def bads():
        while 1:
            yield ss.getNext(getGood=False)
    return goods(), bads()

为了方便起见,我选择test函数作为第一个参数 将来的部分应用(类似于如何映射和过滤 将test函数作为第一个参数)。

def partition(pred, seq):
  return reduce( lambda (yes, no), x: (yes+[x], no) if pred(x) else (yes, no+[x]), seq, ([], []) )