我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
当前回答
Pandas现在提供了一个新的API来处理数据帧差异:Pandas . datafframe .compare
df.compare(df2)
col1 col3
self other self other
0 a c NaN NaN
2 NaN NaN 3.0 4.0
其他回答
也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。
newDf = df1.set_index('Name1')
.drop(df2['Name2'], errors='ignore')
.reset_index(drop=False)
通过索引查找差异。假设df1是df2的一个子集,并且在进行子集设置时将索引前移
df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()
# Example
df1 = pd.DataFrame({"gender":np.random.choice(['m','f'],size=5), "subject":np.random.choice(["bio","phy","chem"],size=5)}, index = [1,2,3,4,5])
df2 = df1.loc[[1,3,5]]
df1
gender subject
1 f bio
2 m chem
3 f phy
4 m bio
5 f bio
df2
gender subject
1 f bio
3 f phy
5 f bio
df3 = df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()
df3
gender subject
2 m chem
4 m bio
对称差分
如果你只对其中一个数据帧中的行感兴趣,而不是两个数据帧中的行,你在寻找集的差异:
pd.concat([df1,df2]).drop_duplicates(keep=False)
⚠️只有在两个数据帧都不包含任何重复的情况下才有效。
设置差分/关系代数差分
如果你对关系代数差异/集差异感兴趣,即df1-df2或df1\df2:
pd.concat([df1,df2,df2]).drop_duplicates(keep=False)
⚠️只有在两个数据帧都不包含任何重复的情况下才有效。
edit2,我想出了一个新的解决方案,不需要设置索引
newdf=pd.concat([df1,df2]).drop_duplicates(keep=False)
好吧,我发现最高投票的答案已经包含我已经弄明白了。是的,我们只能在每个dfs中没有重复的情况下使用此代码。
我有一个棘手的方法。首先,我们将“Name”设置为问题给出的两个数据框架的索引。由于我们在两个dfs中有相同的' Name ',我们可以从'大' df中删除'小' df的索引。 这是代码。
df1.set_index('Name',inplace=True)
df2.set_index('Name',inplace=True)
newdf=df1.drop(df2.index)
另一个可能的解决方案是使用numpy广播:
df1[np.all(~np.all(df1.values == df2.values[:, None], axis=2), axis=0)]
输出:
Name Age
1 Mike 45
4 Marry 27
7 Bolt 39