我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?

换句话说,一个在df1中所有的行/列都不在df2中的数据帧?


当前回答

通过索引查找差异。假设df1是df2的一个子集,并且在进行子集设置时将索引前移

df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

# Example

df1 = pd.DataFrame({"gender":np.random.choice(['m','f'],size=5), "subject":np.random.choice(["bio","phy","chem"],size=5)}, index = [1,2,3,4,5])

df2 =  df1.loc[[1,3,5]]

df1

 gender subject
1      f     bio
2      m    chem
3      f     phy
4      m     bio
5      f     bio

df2

  gender subject
1      f     bio
3      f     phy
5      f     bio

df3 = df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

df3

  gender subject
2      m    chem
4      m     bio

其他回答

也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。

newDf = df1.set_index('Name1')
           .drop(df2['Name2'], errors='ignore')
           .reset_index(drop=False)

通过索引查找差异。假设df1是df2的一个子集,并且在进行子集设置时将索引前移

df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

# Example

df1 = pd.DataFrame({"gender":np.random.choice(['m','f'],size=5), "subject":np.random.choice(["bio","phy","chem"],size=5)}, index = [1,2,3,4,5])

df2 =  df1.loc[[1,3,5]]

df1

 gender subject
1      f     bio
2      m    chem
3      f     phy
4      m     bio
5      f     bio

df2

  gender subject
1      f     bio
3      f     phy
5      f     bio

df3 = df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

df3

  gender subject
2      m    chem
4      m     bio

edit2,我想出了一个新的解决方案,不需要设置索引

newdf=pd.concat([df1,df2]).drop_duplicates(keep=False)

好吧,我发现最高投票的答案已经包含我已经弄明白了。是的,我们只能在每个dfs中没有重复的情况下使用此代码。


我有一个棘手的方法。首先,我们将“Name”设置为问题给出的两个数据框架的索引。由于我们在两个dfs中有相同的' Name ',我们可以从'大' df中删除'小' df的索引。 这是代码。

df1.set_index('Name',inplace=True)
df2.set_index('Name',inplace=True)
newdf=df1.drop(df2.index)

试试这个: Df_new = df1。merge(df2, how='outer', indicator=True)。查询('_merge == "left_only"')。下降(_merge, 1)

它将产生一个新的数据框架,其差异是:df1中存在的值,而df2中不存在。

对称差分

如果你只对其中一个数据帧中的行感兴趣,而不是两个数据帧中的行,你在寻找集的差异:

pd.concat([df1,df2]).drop_duplicates(keep=False)

⚠️只有在两个数据帧都不包含任何重复的情况下才有效。

设置差分/关系代数差分

如果你对关系代数差异/集差异感兴趣,即df1-df2或df1\df2:

pd.concat([df1,df2,df2]).drop_duplicates(keep=False) 

⚠️只有在两个数据帧都不包含任何重复的情况下才有效。