我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?

换句话说,一个在df1中所有的行/列都不在df2中的数据帧?


当前回答

通过索引查找差异。假设df1是df2的一个子集,并且在进行子集设置时将索引前移

df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

# Example

df1 = pd.DataFrame({"gender":np.random.choice(['m','f'],size=5), "subject":np.random.choice(["bio","phy","chem"],size=5)}, index = [1,2,3,4,5])

df2 =  df1.loc[[1,3,5]]

df1

 gender subject
1      f     bio
2      m    chem
3      f     phy
4      m     bio
5      f     bio

df2

  gender subject
1      f     bio
3      f     phy
5      f     bio

df3 = df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

df3

  gender subject
2      m    chem
4      m     bio

其他回答

nice @liangli的解决方案略有变化,不需要改变现有数据框架的索引:

newdf = df1.drop(df1.join(df2.set_index('Name').index))

也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。

newDf = df1.set_index('Name1')
           .drop(df2['Name2'], errors='ignore')
           .reset_index(drop=False)

方法1对于有nan的数据帧无效,因为pd.np.nan != pd.np.nan !我不确定这是否是最好的方法,但它可以避免

df1[~df1.astype(str).apply(tuple, 1).isin(df2.astype(str).apply(tuple, 1))]

它更慢,因为它需要将数据转换为字符串,但由于这个转换pd.np.nan == pd.np.nan。

让我们浏览一下代码。首先,我们将值转换为字符串,并将tuple函数应用于每一行。

df1.astype(str).apply(tuple, 1)
df2.astype(str).apply(tuple, 1)

多亏了这个,我们得到了pd。具有元组列表的系列对象。每个元组包含df1/df2的整行。 然后我们对df1应用isin方法来检查每个元组是否“在”df2中。 结果是pd。带有bool值的系列。如果tuple from df1在df2中,则为True。最后,我们用~符号对结果求反,并对df1进行滤波。长话短说,我们只能从df1中得到那些不在df2中的行。

为了使它更具可读性,我们可以这样写:

df1_str_tuples = df1.astype(str).apply(tuple, 1)
df2_str_tuples = df2.astype(str).apply(tuple, 1)
df1_values_in_df2_filter = df1_str_tuples.isin(df2_str_tuples)
df1_values_not_in_df2 = df1[~df1_values_in_df2_filter]

我发现deepdiff库是一个很棒的工具,如果需要不同的细节或排序问题,它也可以很好地扩展到数据框架。你可以尝试不同的to_dict('records'), to_numpy()和其他导出:

import pandas as pd
from deepdiff import DeepDiff

df1 = pd.DataFrame({
    'Name':
        ['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa'],
    'Age':
        [23,45,12,34,27,44,28,39,40]
})

df2 = df1[df1.Name.isin(['John','Smith','Wale','Tom','Menda','Yuswa'])]

DeepDiff(df1.to_dict(), df2.to_dict())
# {'dictionary_item_removed': [root['Name'][1], root['Name'][4], root['Name'][7], root['Age'][1], root['Age'][4], root['Age'][7]]}

Pandas现在提供了一个新的API来处理数据帧差异:Pandas . datafframe .compare

df.compare(df2)
  col1       col3
  self other self other
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0