我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
当前回答
对称差分
如果你只对其中一个数据帧中的行感兴趣,而不是两个数据帧中的行,你在寻找集的差异:
pd.concat([df1,df2]).drop_duplicates(keep=False)
⚠️只有在两个数据帧都不包含任何重复的情况下才有效。
设置差分/关系代数差分
如果你对关系代数差异/集差异感兴趣,即df1-df2或df1\df2:
pd.concat([df1,df2,df2]).drop_duplicates(keep=False)
⚠️只有在两个数据帧都不包含任何重复的情况下才有效。
其他回答
通过使用drop_duplicate
pd.concat([df1,df2]).drop_duplicates(keep=False)
更新:
上面的方法只适用于那些本身没有副本的数据帧。例如:
df1=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
df2=pd.DataFrame({'A':[1],'B':[2]})
它将输出如下所示,这是错误的
错误输出:
pd.concat([df1, df2]).drop_duplicates(keep=False)
Out[655]:
A B
1 2 3
正确的输出
Out[656]:
A B
1 2 3
2 3 4
3 3 4
如何实现这一目标?
方法一:将isin与tuple结合使用
df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
Out[657]:
A B
1 2 3
2 3 4
3 3 4
方法二:与指标合并
df1.merge(df2,indicator = True, how='left').loc[lambda x : x['_merge']!='both']
Out[421]:
A B _merge
1 2 3 left_only
2 3 4 left_only
3 3 4 left_only
我在处理副本时遇到了问题,当一边有副本,另一边至少有一个副本时,所以我使用了Counter。集合做一个更好的差异,确保双方有相同的计数。这不会返回副本,但如果双方有相同的计数,则不会返回任何副本。
from collections import Counter
def diff(df1, df2, on=None):
"""
:param on: same as pandas.df.merge(on) (a list of columns)
"""
on = on if on else df1.columns
df1on = df1[on]
df2on = df2[on]
c1 = Counter(df1on.apply(tuple, 'columns'))
c2 = Counter(df2on.apply(tuple, 'columns'))
c1c2 = c1-c2
c2c1 = c2-c1
df1ondf2on = pd.DataFrame(list(c1c2.elements()), columns=on)
df2ondf1on = pd.DataFrame(list(c2c1.elements()), columns=on)
df1df2 = df1.merge(df1ondf2on).drop_duplicates(subset=on)
df2df1 = df2.merge(df2ondf1on).drop_duplicates(subset=on)
return pd.concat([df1df2, df2df1])
> df1 = pd.DataFrame({'a': [1, 1, 3, 4, 4]})
> df2 = pd.DataFrame({'a': [1, 2, 3, 4, 4]})
> diff(df1, df2)
a
0 1
0 2
pandas DataFrame.compare中有一种新的方法,即比较2个不同的dataframe,并返回数据记录中每列中变化的值。
例子
第一个Dataframe
Id Customer Status Date
1 ABC Good Mar 2023
2 BAC Good Feb 2024
3 CBA Bad Apr 2022
第二个Dataframe
Id Customer Status Date
1 ABC Bad Mar 2023
2 BAC Good Feb 2024
5 CBA Good Apr 2024
比较Dataframes
print("Dataframe difference -- \n")
print(df1.compare(df2))
print("Dataframe difference keeping equal values -- \n")
print(df1.compare(df2, keep_equal=True))
print("Dataframe difference keeping same shape -- \n")
print(df1.compare(df2, keep_shape=True))
print("Dataframe difference keeping same shape and equal values -- \n")
print(df1.compare(df2, keep_shape=True, keep_equal=True))
结果
Dataframe difference --
Id Status Date
self other self other self other
0 NaN NaN Good Bad NaN NaN
2 3.0 5.0 Bad Good Apr 2022 Apr 2024
Dataframe difference keeping equal values --
Id Status Date
self other self other self other
0 1 1 Good Bad Mar 2023 Mar 2023
2 3 5 Bad Good Apr 2022 Apr 2024
Dataframe difference keeping same shape --
Id Customer Status Date
self other self other self other self other
0 NaN NaN NaN NaN Good Bad NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 3.0 5.0 NaN NaN Bad Good Apr 2022 Apr 2024
Dataframe difference keeping same shape and equal values --
Id Customer Status Date
self other self other self other self other
0 1 1 ABC ABC Good Bad Mar 2023 Mar 2023
1 2 2 BAC BAC Good Good Feb 2024 Feb 2024
2 3 5 CBA CBA Bad Good Apr 2022 Apr 2024
nice @liangli的解决方案略有变化,不需要改变现有数据框架的索引:
newdf = df1.drop(df1.join(df2.set_index('Name').index))
试试这个: Df_new = df1。merge(df2, how='outer', indicator=True)。查询('_merge == "left_only"')。下降(_merge, 1)
它将产生一个新的数据框架,其差异是:df1中存在的值,而df2中不存在。