我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?

换句话说,一个在df1中所有的行/列都不在df2中的数据帧?


当前回答

nice @liangli的解决方案略有变化,不需要改变现有数据框架的索引:

newdf = df1.drop(df1.join(df2.set_index('Name').index))

其他回答

Pandas现在提供了一个新的API来处理数据帧差异:Pandas . datafframe .compare

df.compare(df2)
  col1       col3
  self other self other
0    a     c  NaN   NaN
2  NaN   NaN  3.0   4.0

也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。

newDf = df1.set_index('Name1')
           .drop(df2['Name2'], errors='ignore')
           .reset_index(drop=False)
import pandas as pd
# given
df1 = pd.DataFrame({'Name':['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa',],
    'Age':[23,45,12,34,27,44,28,39,40]})
df2 = pd.DataFrame({'Name':['John','Smith','Wale','Tom','Menda','Yuswa',],
    'Age':[23,12,34,44,28,40]})

# find elements in df1 that are not in df2
df_1notin2 = df1[~(df1['Name'].isin(df2['Name']) & df1['Age'].isin(df2['Age']))].reset_index(drop=True)

# output:
print('df1\n', df1)
print('df2\n', df2)
print('df_1notin2\n', df_1notin2)

# df1
#     Age   Name
# 0   23   John
# 1   45   Mike
# 2   12  Smith
# 3   34   Wale
# 4   27  Marry
# 5   44    Tom
# 6   28  Menda
# 7   39   Bolt
# 8   40  Yuswa
# df2
#     Age   Name
# 0   23   John
# 1   12  Smith
# 2   34   Wale
# 3   44    Tom
# 4   28  Menda
# 5   40  Yuswa
# df_1notin2
#     Age   Name
# 0   45   Mike
# 1   27  Marry
# 2   39   Bolt

除了公认的答案,我想提出一个更广泛的解决方案,可以找到两个数据框架的2D集差异与任何索引/列(他们可能不符合两个数据框架)。此外,该方法允许设置浮动元素的容忍度,用于数据帧比较(它使用np.isclose)


import numpy as np
import pandas as pd

def get_dataframe_setdiff2d(df_new: pd.DataFrame, 
                            df_old: pd.DataFrame, 
                            rtol=1e-03, atol=1e-05) -> pd.DataFrame:
    """Returns set difference of two pandas DataFrames"""

    union_index = np.union1d(df_new.index, df_old.index)
    union_columns = np.union1d(df_new.columns, df_old.columns)

    new = df_new.reindex(index=union_index, columns=union_columns)
    old = df_old.reindex(index=union_index, columns=union_columns)

    mask_diff = ~np.isclose(new, old, rtol, atol)

    df_bool = pd.DataFrame(mask_diff, union_index, union_columns)

    df_diff = pd.concat([new[df_bool].stack(),
                         old[df_bool].stack()], axis=1)

    df_diff.columns = ["New", "Old"]

    return df_diff

例子:

In [1]

df1 = pd.DataFrame({'A':[2,1,2],'C':[2,1,2]})
df2 = pd.DataFrame({'A':[1,1],'B':[1,1]})

print("df1:\n", df1, "\n")

print("df2:\n", df2, "\n")

diff = get_dataframe_setdiff2d(df1, df2)

print("diff:\n", diff, "\n")
Out [1]

df1:
   A  C
0  2  2
1  1  1
2  2  2 

df2:
   A  B
0  1  1
1  1  1 

diff:
     New  Old
0 A  2.0  1.0
  B  NaN  1.0
  C  2.0  NaN
1 B  NaN  1.0
  C  1.0  NaN
2 A  2.0  NaN
  C  2.0  NaN 

我发现deepdiff库是一个很棒的工具,如果需要不同的细节或排序问题,它也可以很好地扩展到数据框架。你可以尝试不同的to_dict('records'), to_numpy()和其他导出:

import pandas as pd
from deepdiff import DeepDiff

df1 = pd.DataFrame({
    'Name':
        ['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa'],
    'Age':
        [23,45,12,34,27,44,28,39,40]
})

df2 = df1[df1.Name.isin(['John','Smith','Wale','Tom','Menda','Yuswa'])]

DeepDiff(df1.to_dict(), df2.to_dict())
# {'dictionary_item_removed': [root['Name'][1], root['Name'][4], root['Name'][7], root['Age'][1], root['Age'][4], root['Age'][7]]}