我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?

换句话说,一个在df1中所有的行/列都不在df2中的数据帧?


当前回答

另一个可能的解决方案是使用numpy广播:

df1[np.all(~np.all(df1.values == df2.values[:, None], axis=2), axis=0)]

输出:

    Name  Age
1   Mike   45
4  Marry   27
7   Bolt   39

其他回答

通过使用drop_duplicate

pd.concat([df1,df2]).drop_duplicates(keep=False)

更新:

上面的方法只适用于那些本身没有副本的数据帧。例如:

df1=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
df2=pd.DataFrame({'A':[1],'B':[2]})

它将输出如下所示,这是错误的

错误输出:

pd.concat([df1, df2]).drop_duplicates(keep=False)
Out[655]: 
   A  B
1  2  3

正确的输出

Out[656]: 
   A  B
1  2  3
2  3  4
3  3  4

如何实现这一目标?

方法一:将isin与tuple结合使用

df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
Out[657]: 
   A  B
1  2  3
2  3  4
3  3  4

方法二:与指标合并

df1.merge(df2,indicator = True, how='left').loc[lambda x : x['_merge']!='both']
Out[421]: 
   A  B     _merge
1  2  3  left_only
2  3  4  left_only
3  3  4  left_only

定义数据框架:

df1 = pd.DataFrame({
    'Name':
        ['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa'],
    'Age':
        [23,45,12,34,27,44,28,39,40]
})

df2 = df1[df1.Name.isin(['John','Smith','Wale','Tom','Menda','Yuswa'])

df1

    Name  Age
0   John   23
1   Mike   45
2  Smith   12
3   Wale   34
4  Marry   27
5    Tom   44
6  Menda   28
7   Bolt   39
8  Yuswa   40

df2

    Name  Age
0   John   23
2  Smith   12
3   Wale   34
5    Tom   44
6  Menda   28
8  Yuswa   40

两者之间的区别是:

df1[~df1.isin(df2)].dropna()

    Name   Age
1   Mike  45.0
4  Marry  27.0
7   Bolt  39.0

地点:

isin(df2)返回df1中也在df2中的行。 ~(元素逻辑NOT)在表达式前面对结果求反,因此我们得到df1中不在df2中的元素——两者之间的差值。 .dropna()删除NaN显示所需输出的行

注意:这只适用于len(df1) >= len(df2)。如果df2比df1长,可以反转表达式:df2[~df2.isin(df1)].dropna()

pandas DataFrame.compare中有一种新的方法,即比较2个不同的dataframe,并返回数据记录中每列中变化的值。

例子

第一个Dataframe

Id Customer Status      Date
1      ABC   Good  Mar 2023
2      BAC   Good  Feb 2024
3      CBA    Bad  Apr 2022

第二个Dataframe

Id Customer Status      Date
1      ABC    Bad  Mar 2023
2      BAC   Good  Feb 2024
5      CBA   Good  Apr 2024

比较Dataframes

print("Dataframe difference -- \n")
print(df1.compare(df2))

print("Dataframe difference keeping equal values -- \n")
print(df1.compare(df2, keep_equal=True))

print("Dataframe difference keeping same shape -- \n")
print(df1.compare(df2, keep_shape=True))

print("Dataframe difference keeping same shape and equal values -- \n")
print(df1.compare(df2, keep_shape=True, keep_equal=True))

结果

Dataframe difference -- 

    Id       Status            Date          
  self other   self other      self     other
0  NaN   NaN   Good   Bad       NaN       NaN
2  3.0   5.0    Bad  Good  Apr 2022  Apr 2024

Dataframe difference keeping equal values -- 

    Id       Status            Date          
  self other   self other      self     other
0    1     1   Good   Bad  Mar 2023  Mar 2023
2    3     5    Bad  Good  Apr 2022  Apr 2024

Dataframe difference keeping same shape -- 

    Id       Customer       Status            Date          
  self other     self other   self other      self     other
0  NaN   NaN      NaN   NaN   Good   Bad       NaN       NaN
1  NaN   NaN      NaN   NaN    NaN   NaN       NaN       NaN
2  3.0   5.0      NaN   NaN    Bad  Good  Apr 2022  Apr 2024

Dataframe difference keeping same shape and equal values -- 

    Id       Customer       Status            Date          
  self other     self other   self other      self     other
0    1     1      ABC   ABC   Good   Bad  Mar 2023  Mar 2023
1    2     2      BAC   BAC   Good  Good  Feb 2024  Feb 2024
2    3     5      CBA   CBA    Bad  Good  Apr 2022  Apr 2024

通过索引查找差异。假设df1是df2的一个子集,并且在进行子集设置时将索引前移

df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

# Example

df1 = pd.DataFrame({"gender":np.random.choice(['m','f'],size=5), "subject":np.random.choice(["bio","phy","chem"],size=5)}, index = [1,2,3,4,5])

df2 =  df1.loc[[1,3,5]]

df1

 gender subject
1      f     bio
2      m    chem
3      f     phy
4      m     bio
5      f     bio

df2

  gender subject
1      f     bio
3      f     phy
5      f     bio

df3 = df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

df3

  gender subject
2      m    chem
4      m     bio

我在处理副本时遇到了问题,当一边有副本,另一边至少有一个副本时,所以我使用了Counter。集合做一个更好的差异,确保双方有相同的计数。这不会返回副本,但如果双方有相同的计数,则不会返回任何副本。

from collections import Counter

def diff(df1, df2, on=None):
    """
    :param on: same as pandas.df.merge(on) (a list of columns)
    """
    on = on if on else df1.columns
    df1on = df1[on]
    df2on = df2[on]
    c1 = Counter(df1on.apply(tuple, 'columns'))
    c2 = Counter(df2on.apply(tuple, 'columns'))
    c1c2 = c1-c2
    c2c1 = c2-c1
    df1ondf2on = pd.DataFrame(list(c1c2.elements()), columns=on)
    df2ondf1on = pd.DataFrame(list(c2c1.elements()), columns=on)
    df1df2 = df1.merge(df1ondf2on).drop_duplicates(subset=on)
    df2df1 = df2.merge(df2ondf1on).drop_duplicates(subset=on)
    return pd.concat([df1df2, df2df1])
> df1 = pd.DataFrame({'a': [1, 1, 3, 4, 4]})
> df2 = pd.DataFrame({'a': [1, 2, 3, 4, 4]})
> diff(df1, df2)
   a
0  1
0  2