我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?

换句话说,一个在df1中所有的行/列都不在df2中的数据帧?


当前回答

另一个可能的解决方案是使用numpy广播:

df1[np.all(~np.all(df1.values == df2.values[:, None], axis=2), axis=0)]

输出:

    Name  Age
1   Mike   45
4  Marry   27
7   Bolt   39

其他回答

通过索引查找差异。假设df1是df2的一个子集,并且在进行子集设置时将索引前移

df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

# Example

df1 = pd.DataFrame({"gender":np.random.choice(['m','f'],size=5), "subject":np.random.choice(["bio","phy","chem"],size=5)}, index = [1,2,3,4,5])

df2 =  df1.loc[[1,3,5]]

df1

 gender subject
1      f     bio
2      m    chem
3      f     phy
4      m     bio
5      f     bio

df2

  gender subject
1      f     bio
3      f     phy
5      f     bio

df3 = df1.loc[set(df1.index).symmetric_difference(set(df2.index))].dropna()

df3

  gender subject
2      m    chem
4      m     bio

方法1对于有nan的数据帧无效,因为pd.np.nan != pd.np.nan !我不确定这是否是最好的方法,但它可以避免

df1[~df1.astype(str).apply(tuple, 1).isin(df2.astype(str).apply(tuple, 1))]

它更慢,因为它需要将数据转换为字符串,但由于这个转换pd.np.nan == pd.np.nan。

让我们浏览一下代码。首先,我们将值转换为字符串,并将tuple函数应用于每一行。

df1.astype(str).apply(tuple, 1)
df2.astype(str).apply(tuple, 1)

多亏了这个,我们得到了pd。具有元组列表的系列对象。每个元组包含df1/df2的整行。 然后我们对df1应用isin方法来检查每个元组是否“在”df2中。 结果是pd。带有bool值的系列。如果tuple from df1在df2中,则为True。最后,我们用~符号对结果求反,并对df1进行滤波。长话短说,我们只能从df1中得到那些不在df2中的行。

为了使它更具可读性,我们可以这样写:

df1_str_tuples = df1.astype(str).apply(tuple, 1)
df2_str_tuples = df2.astype(str).apply(tuple, 1)
df1_values_in_df2_filter = df1_str_tuples.isin(df2_str_tuples)
df1_values_not_in_df2 = df1[~df1_values_in_df2_filter]

通过使用drop_duplicate

pd.concat([df1,df2]).drop_duplicates(keep=False)

更新:

上面的方法只适用于那些本身没有副本的数据帧。例如:

df1=pd.DataFrame({'A':[1,2,3,3],'B':[2,3,4,4]})
df2=pd.DataFrame({'A':[1],'B':[2]})

它将输出如下所示,这是错误的

错误输出:

pd.concat([df1, df2]).drop_duplicates(keep=False)
Out[655]: 
   A  B
1  2  3

正确的输出

Out[656]: 
   A  B
1  2  3
2  3  4
3  3  4

如何实现这一目标?

方法一:将isin与tuple结合使用

df1[~df1.apply(tuple,1).isin(df2.apply(tuple,1))]
Out[657]: 
   A  B
1  2  3
2  3  4
3  3  4

方法二:与指标合并

df1.merge(df2,indicator = True, how='left').loc[lambda x : x['_merge']!='both']
Out[421]: 
   A  B     _merge
1  2  3  left_only
2  3  4  left_only
3  3  4  left_only

也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。

newDf = df1.set_index('Name1')
           .drop(df2['Name2'], errors='ignore')
           .reset_index(drop=False)

定义数据框架:

df1 = pd.DataFrame({
    'Name':
        ['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa'],
    'Age':
        [23,45,12,34,27,44,28,39,40]
})

df2 = df1[df1.Name.isin(['John','Smith','Wale','Tom','Menda','Yuswa'])

df1

    Name  Age
0   John   23
1   Mike   45
2  Smith   12
3   Wale   34
4  Marry   27
5    Tom   44
6  Menda   28
7   Bolt   39
8  Yuswa   40

df2

    Name  Age
0   John   23
2  Smith   12
3   Wale   34
5    Tom   44
6  Menda   28
8  Yuswa   40

两者之间的区别是:

df1[~df1.isin(df2)].dropna()

    Name   Age
1   Mike  45.0
4  Marry  27.0
7   Bolt  39.0

地点:

isin(df2)返回df1中也在df2中的行。 ~(元素逻辑NOT)在表达式前面对结果求反,因此我们得到df1中不在df2中的元素——两者之间的差值。 .dropna()删除NaN显示所需输出的行

注意:这只适用于len(df1) >= len(df2)。如果df2比df1长,可以反转表达式:df2[~df2.isin(df1)].dropna()