我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?
换句话说,一个在df1中所有的行/列都不在df2中的数据帧?
当前回答
对于行,尝试这样做,其中Name是联合索引列(可以是多个公共列的列表,或者指定left_on和right_on):
m = df1.merge(df2, on='Name', how='outer', suffixes=['', '_'], indicator=True)
indicator=True设置很有用,因为它添加了一个名为_merge的列,其中包含df1和df2之间的所有更改,分为3种可能的类型:“left_only”,“right_only”或“both”。
对于列,试试这个:
set(df1.columns).symmetric_difference(df2.columns)
其他回答
pandas DataFrame.compare中有一种新的方法,即比较2个不同的dataframe,并返回数据记录中每列中变化的值。
例子
第一个Dataframe
Id Customer Status Date
1 ABC Good Mar 2023
2 BAC Good Feb 2024
3 CBA Bad Apr 2022
第二个Dataframe
Id Customer Status Date
1 ABC Bad Mar 2023
2 BAC Good Feb 2024
5 CBA Good Apr 2024
比较Dataframes
print("Dataframe difference -- \n")
print(df1.compare(df2))
print("Dataframe difference keeping equal values -- \n")
print(df1.compare(df2, keep_equal=True))
print("Dataframe difference keeping same shape -- \n")
print(df1.compare(df2, keep_shape=True))
print("Dataframe difference keeping same shape and equal values -- \n")
print(df1.compare(df2, keep_shape=True, keep_equal=True))
结果
Dataframe difference --
Id Status Date
self other self other self other
0 NaN NaN Good Bad NaN NaN
2 3.0 5.0 Bad Good Apr 2022 Apr 2024
Dataframe difference keeping equal values --
Id Status Date
self other self other self other
0 1 1 Good Bad Mar 2023 Mar 2023
2 3 5 Bad Good Apr 2022 Apr 2024
Dataframe difference keeping same shape --
Id Customer Status Date
self other self other self other self other
0 NaN NaN NaN NaN Good Bad NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 3.0 5.0 NaN NaN Bad Good Apr 2022 Apr 2024
Dataframe difference keeping same shape and equal values --
Id Customer Status Date
self other self other self other self other
0 1 1 ABC ABC Good Bad Mar 2023 Mar 2023
1 2 2 BAC BAC Good Good Feb 2024 Feb 2024
2 3 5 CBA CBA Bad Good Apr 2022 Apr 2024
定义数据框架:
df1 = pd.DataFrame({
'Name':
['John','Mike','Smith','Wale','Marry','Tom','Menda','Bolt','Yuswa'],
'Age':
[23,45,12,34,27,44,28,39,40]
})
df2 = df1[df1.Name.isin(['John','Smith','Wale','Tom','Menda','Yuswa'])
df1
Name Age
0 John 23
1 Mike 45
2 Smith 12
3 Wale 34
4 Marry 27
5 Tom 44
6 Menda 28
7 Bolt 39
8 Yuswa 40
df2
Name Age
0 John 23
2 Smith 12
3 Wale 34
5 Tom 44
6 Menda 28
8 Yuswa 40
两者之间的区别是:
df1[~df1.isin(df2)].dropna()
Name Age
1 Mike 45.0
4 Marry 27.0
7 Bolt 39.0
地点:
isin(df2)返回df1中也在df2中的行。 ~(元素逻辑NOT)在表达式前面对结果求反,因此我们得到df1中不在df2中的元素——两者之间的差值。 .dropna()删除NaN显示所需输出的行
注意:这只适用于len(df1) >= len(df2)。如果df2比df1长,可以反转表达式:df2[~df2.isin(df1)].dropna()
对称差分
如果你只对其中一个数据帧中的行感兴趣,而不是两个数据帧中的行,你在寻找集的差异:
pd.concat([df1,df2]).drop_duplicates(keep=False)
⚠️只有在两个数据帧都不包含任何重复的情况下才有效。
设置差分/关系代数差分
如果你对关系代数差异/集差异感兴趣,即df1-df2或df1\df2:
pd.concat([df1,df2,df2]).drop_duplicates(keep=False)
⚠️只有在两个数据帧都不包含任何重复的情况下才有效。
nice @liangli的解决方案略有变化,不需要改变现有数据框架的索引:
newdf = df1.drop(df1.join(df2.set_index('Name').index))
也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。
newDf = df1.set_index('Name1')
.drop(df2['Name2'], errors='ignore')
.reset_index(drop=False)