当我打印一个numpy数组时,我得到了一个截断的表示,但我想要完整的数组。

>>> numpy.arange(10000)
array([   0,    1,    2, ..., 9997, 9998, 9999])

>>> numpy.arange(10000).reshape(250,40)
array([[   0,    1,    2, ...,   37,   38,   39],
       [  40,   41,   42, ...,   77,   78,   79],
       [  80,   81,   82, ...,  117,  118,  119],
       ..., 
       [9880, 9881, 9882, ..., 9917, 9918, 9919],
       [9920, 9921, 9922, ..., 9957, 9958, 9959],
       [9960, 9961, 9962, ..., 9997, 9998, 9999]])

听起来你在用numpy。

如果是这种情况,您可以添加:

import numpy as np
np.set_printoptions(threshold=np.nan)

这将禁用拐角打印。有关详细信息,请参阅本NumPy教程。


使用numpy.set_printoptions:

import sys
import numpy
numpy.set_printoptions(threshold=sys.maxsize)

这里有一个一次性的方法,如果您不想更改默认设置,这很有用:

def fullprint(*args, **kwargs):
  from pprint import pprint
  import numpy
  opt = numpy.get_printoptions()
  numpy.set_printoptions(threshold=numpy.inf)
  pprint(*args, **kwargs)
  numpy.set_printoptions(**opt)

import numpy as np
np.set_printoptions(threshold=np.inf)

我建议使用np.inf而不是其他人建议的np.nan。它们都符合您的目的,但通过将阈值设置为“无限”,每个阅读代码的人都会明白您的意思。对我来说,“不是数字”的门槛似乎有点模糊。


前面的答案是正确的,但作为一个较弱的选择,您可以转换为列表:

>>> numpy.arange(100).reshape(25,4).tolist()

[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 15], [16, 17, 18, 19], [20, 21,
22, 23], [24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35], [36, 37, 38, 39], [40, 41,
42, 43], [44, 45, 46, 47], [48, 49, 50, 51], [52, 53, 54, 55], [56, 57, 58, 59], [60, 61,
62, 63], [64, 65, 66, 67], [68, 69, 70, 71], [72, 73, 74, 75], [76, 77, 78, 79], [80, 81,
82, 83], [84, 85, 86, 87], [88, 89, 90, 91], [92, 93, 94, 95], [96, 97, 98, 99]]

使用Paul Price建议的上下文管理器

import numpy as np


class fullprint:
    'context manager for printing full numpy arrays'

    def __init__(self, **kwargs):
        kwargs.setdefault('threshold', np.inf)
        self.opt = kwargs

    def __enter__(self):
        self._opt = np.get_printoptions()
        np.set_printoptions(**self.opt)

    def __exit__(self, type, value, traceback):
        np.set_printoptions(**self._opt)


if __name__ == '__main__': 
    a = np.arange(1001)

    with fullprint():
        print(a)

    print(a)

    with fullprint(threshold=None, edgeitems=10):
        print(a)

numpy.savetxt

numpy.savetxt(sys.stdout, numpy.arange(10000))

或者如果需要字符串:

import StringIO
sio = StringIO.StringIO()
numpy.savetxt(sio, numpy.arange(10000))
s = sio.getvalue()
print s

默认输出格式为:

0.000000000000000000e+00
1.000000000000000000e+00
2.000000000000000000e+00
3.000000000000000000e+00
...

并且可以用其他参数来配置它。

请特别注意,这也不会显示方括号,并允许进行大量自定义,如:how to print a Numpy array without bracket?

在Python 2.7.12,numpy 1.11.1上测试。


如果数组太大而无法打印,NumPy会自动跳过数组的中心部分,只打印角:要禁用此行为并强制NumPy打印整个阵列,可以使用set_printoptions更改打印选项。

>>> np.set_printoptions(threshold='nan')

or

>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

您还可以参考numpy文档numpy文档中的“或部分”以获得更多帮助。


这是对neoks答案的轻微修改(删除了向set_printoptions传递额外参数的选项)。

它展示了如何使用contextlib.contextmanager轻松创建这样的contextmanager,只需更少的代码行:

import numpy as np
from contextlib import contextmanager

@contextmanager
def show_complete_array():
    oldoptions = np.get_printoptions()
    np.set_printoptions(threshold=np.inf)
    try:
        yield
    finally:
        np.set_printoptions(**oldoptions)

在您的代码中,可以这样使用:

a = np.arange(1001)

print(a)      # shows the truncated array

with show_complete_array():
    print(a)  # shows the complete array

print(a)      # shows the truncated array (again)

假设您有一个numpy数组

 arr = numpy.arange(10000).reshape(250,40)

如果您想一次性打印整个数组(不切换np.set_printoptions),但想要比上下文管理器更简单(更少的代码),只需执行以下操作

for row in arr:
     print row 

您可以使用arraystring函数-docs。

a = numpy.arange(10000).reshape(250,40)
print(numpy.array2string(a, threshold=numpy.nan, max_line_width=numpy.nan))
# [Big output]

作为对最大列数的补充(使用numpy.set_printoptions(threshold=numpy.nan)进行了修复),也有显示字符的限制。在某些环境中,例如从bash调用python(而不是交互式会话)时,可以通过如下设置参数linewidth来解决此问题。

import numpy as np
np.set_printoptions(linewidth=2000)    # default = 75
Mat = np.arange(20000,20150).reshape(2,75)    # 150 elements (75 columns)
print(Mat)

在这种情况下,窗口应该限制换行的字符数。

对于那些使用崇高文本并希望在输出窗口中看到结果的用户,应该将构建选项“word_wrap”:false添加到崇高构建文件[source]中。


临时设置

您可以使用printoptions上下文管理器:

with numpy.printoptions(threshold=numpy.inf):
    print(arr)

(当然,如果导入numpy的方式是用np替换numpy)

使用上下文管理器(with块)可以确保上下文管理器完成后,打印选项将恢复到块开始之前的状态。它确保设置是临时的,并且仅应用于块内的代码。

有关上下文管理器及其支持的其他参数的详细信息,请参阅numpy.printoptions文档。它在NumPy 1.15(发布于2018-07-23)中推出。


从NumPy 1.16版本开始,有关更多详细信息,请参阅GitHub票证12251。

from sys import maxsize
from numpy import set_printoptions

set_printoptions(threshold=maxsize)

您不会总是想要打印所有项目,尤其是对于大型阵列。

显示更多项目的简单方法:

In [349]: ar
Out[349]: array([1, 1, 1, ..., 0, 0, 0])

In [350]: ar[:100]
Out[350]:
array([1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
       1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])

默认情况下,当切片数组<1000时,它工作正常。


关闭并返回正常模式

np.set_printoptions(threshold=False)

稍微修改一下:(因为你要打印一个巨大的列表)

import numpy as np
np.set_printoptions(threshold=np.inf, linewidth=200)

x = np.arange(1000)
print(x)

这将增加每行的字符数(默认线宽为75)。使用适合编码环境的任何线宽值。这将通过每行添加更多的字符来避免您必须经过大量的输出行。


如果你有熊猫,

    numpy.arange(10000).reshape(250,40)
    print(pandas.DataFrame(a).to_string(header=False, index=False))

避免了需要重置numpy.set_printoptions(threshold=sys.maxsize)的副作用,并且不会得到numpy.array和括号。我发现将一个大数组转储到日志文件中很方便


如果您正在使用Jupyter,请尝试使用变量检查器扩展。您可以单击每个变量以查看整个数组。


如果你使用的是jupyter笔记本,我发现这是一次性使用的最简单的解决方案。基本上将numpy数组转换为列表,然后转换为字符串,然后打印。这样做的好处是在数组中保留逗号分隔符,而使用numpyp.printoptions(threshold=np.inf)则不会:

import numpy as np
print(str(np.arange(10000).reshape(250,40).tolist()))

with np.printoptions(edgeitems=50):
    print(x)

将50更改为您想看到的行数

来源:此处


这是最黑客的解决方案,它甚至可以像numpy一样打印得很好:

import numpy as np

a = np.arange(10000).reshape(250,40)

b = [str(row) for row in a.tolist()]

print('\n'.join(b))

Out: