当我打印一个numpy数组时,我得到了一个截断的表示,但我想要完整的数组。

>>> numpy.arange(10000)
array([   0,    1,    2, ..., 9997, 9998, 9999])

>>> numpy.arange(10000).reshape(250,40)
array([[   0,    1,    2, ...,   37,   38,   39],
       [  40,   41,   42, ...,   77,   78,   79],
       [  80,   81,   82, ...,  117,  118,  119],
       ..., 
       [9880, 9881, 9882, ..., 9917, 9918, 9919],
       [9920, 9921, 9922, ..., 9957, 9958, 9959],
       [9960, 9961, 9962, ..., 9997, 9998, 9999]])

当前回答

稍微修改一下:(因为你要打印一个巨大的列表)

import numpy as np
np.set_printoptions(threshold=np.inf, linewidth=200)

x = np.arange(1000)
print(x)

这将增加每行的字符数(默认线宽为75)。使用适合编码环境的任何线宽值。这将通过每行添加更多的字符来避免您必须经过大量的输出行。

其他回答

如果数组太大而无法打印,NumPy会自动跳过数组的中心部分,只打印角:要禁用此行为并强制NumPy打印整个阵列,可以使用set_printoptions更改打印选项。

>>> np.set_printoptions(threshold='nan')

or

>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

您还可以参考numpy文档numpy文档中的“或部分”以获得更多帮助。

import numpy as np
np.set_printoptions(threshold=np.inf)

我建议使用np.inf而不是其他人建议的np.nan。它们都符合您的目的,但通过将阈值设置为“无限”,每个阅读代码的人都会明白您的意思。对我来说,“不是数字”的门槛似乎有点模糊。

如果您正在使用Jupyter,请尝试使用变量检查器扩展。您可以单击每个变量以查看整个数组。

这是对neoks答案的轻微修改(删除了向set_printoptions传递额外参数的选项)。

它展示了如何使用contextlib.contextmanager轻松创建这样的contextmanager,只需更少的代码行:

import numpy as np
from contextlib import contextmanager

@contextmanager
def show_complete_array():
    oldoptions = np.get_printoptions()
    np.set_printoptions(threshold=np.inf)
    try:
        yield
    finally:
        np.set_printoptions(**oldoptions)

在您的代码中,可以这样使用:

a = np.arange(1001)

print(a)      # shows the truncated array

with show_complete_array():
    print(a)  # shows the complete array

print(a)      # shows the truncated array (again)

这里有一个一次性的方法,如果您不想更改默认设置,这很有用:

def fullprint(*args, **kwargs):
  from pprint import pprint
  import numpy
  opt = numpy.get_printoptions()
  numpy.set_printoptions(threshold=numpy.inf)
  pprint(*args, **kwargs)
  numpy.set_printoptions(**opt)