当我打印一个numpy数组时,我得到了一个截断的表示,但我想要完整的数组。

>>> numpy.arange(10000)
array([   0,    1,    2, ..., 9997, 9998, 9999])

>>> numpy.arange(10000).reshape(250,40)
array([[   0,    1,    2, ...,   37,   38,   39],
       [  40,   41,   42, ...,   77,   78,   79],
       [  80,   81,   82, ...,  117,  118,  119],
       ..., 
       [9880, 9881, 9882, ..., 9917, 9918, 9919],
       [9920, 9921, 9922, ..., 9957, 9958, 9959],
       [9960, 9961, 9962, ..., 9997, 9998, 9999]])

当前回答

稍微修改一下:(因为你要打印一个巨大的列表)

import numpy as np
np.set_printoptions(threshold=np.inf, linewidth=200)

x = np.arange(1000)
print(x)

这将增加每行的字符数(默认线宽为75)。使用适合编码环境的任何线宽值。这将通过每行添加更多的字符来避免您必须经过大量的输出行。

其他回答

这是最黑客的解决方案,它甚至可以像numpy一样打印得很好:

import numpy as np

a = np.arange(10000).reshape(250,40)

b = [str(row) for row in a.tolist()]

print('\n'.join(b))

Out:

您不会总是想要打印所有项目,尤其是对于大型阵列。

显示更多项目的简单方法:

In [349]: ar
Out[349]: array([1, 1, 1, ..., 0, 0, 0])

In [350]: ar[:100]
Out[350]:
array([1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1,
       1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1])

默认情况下,当切片数组<1000时,它工作正常。

如果数组太大而无法打印,NumPy会自动跳过数组的中心部分,只打印角:要禁用此行为并强制NumPy打印整个阵列,可以使用set_printoptions更改打印选项。

>>> np.set_printoptions(threshold='nan')

or

>>> np.set_printoptions(edgeitems=3,infstr='inf',
... linewidth=75, nanstr='nan', precision=8,
... suppress=False, threshold=1000, formatter=None)

您还可以参考numpy文档numpy文档中的“或部分”以获得更多帮助。

临时设置

您可以使用printoptions上下文管理器:

with numpy.printoptions(threshold=numpy.inf):
    print(arr)

(当然,如果导入numpy的方式是用np替换numpy)

使用上下文管理器(with块)可以确保上下文管理器完成后,打印选项将恢复到块开始之前的状态。它确保设置是临时的,并且仅应用于块内的代码。

有关上下文管理器及其支持的其他参数的详细信息,请参阅numpy.printoptions文档。它在NumPy 1.15(发布于2018-07-23)中推出。

如果你有熊猫,

    numpy.arange(10000).reshape(250,40)
    print(pandas.DataFrame(a).to_string(header=False, index=False))

避免了需要重置numpy.set_printoptions(threshold=sys.maxsize)的副作用,并且不会得到numpy.array和括号。我发现将一个大数组转储到日志文件中很方便