Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

关键要点

Python 的语法库使用输出关键字的存在来设定返回生成器的函数。 生成器是一种迭代器, 这是一种在 Python 中循环的主要方式。 生成器本质上是一个可回收的函数。 与返回返回值和结束函数不同的是, 生成关键字返回一个值和中止函数。 当下一个( g) 被调用到生成器时, 函数会恢复它所剩的功能。 只有当函数遇到一个明示或暗示返回时, 它才会实际结束 。

书写和理解发电机技术

一个理解和思考发电机的简单方法就是用印刷品()而不是产量来撰写一个常规函数:

def f(n):
    for x in range(n):
        print(x)
        print(x * 10)

注意它的产出:

>>> f(3)
0
0
1
10
2
2

3⁄4 ̄ ̧漯B

def f(n):
    for x in range(n):
        yield x
        yield x * 10

给 :

>>> list(f(3))
[0, 0, 1, 10, 2, 20]

迭代程序协议

答案“什么产量能做什么”可以是简短和简单的, 但是它是更大的世界的一部分, 所谓的“标准协议”。

在迭代协议的发送方,有两种相关的对象。可循环的物体是您可以绕过的东西。迭代器是跟踪环状状态的物体。

在迭代协议的消费方方面,我们调用可迭代对象的迭代者获得一个迭代者。然后我们调用下一个迭代者从迭代器中获取值。当没有更多数据时,会提出一个停止使用例外 :

>>> s = [10, 20, 30]    # The list is the "iterable"
>>> it = iter(s)        # This is the "iterator"
>>> next(it)            # Gets values out of an iterator
10
>>> next(it)
20
>>> next(it)
30
>>> next(it)
Traceback (most recent call last):
 ...
StopIteration

为了让这一切变得更容易, 对于卢布人来说,叫它, 下一个代表我们:

>>> for x in s:
...     print(x)
...   
10
20
30

一个人可以写一本关于这一切的书, 但这些都是关键点。 当我教授 Python 课程时, 我发现这是一个最起码的足够解释 来建立理解, 并马上开始使用它。 特别是, 用打印写一个函数, 测试它, 然后转换成收益的技巧, 似乎对 Python 各级程序员都有效 。

其他回答

下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。

我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:

我打电话给你并告诉你,我想要一个以特定方式计算的数字序列,我告诉你算法是什么。 这个步骤对应着定义发电机的函数, 也就是包含一个产出的函数。 稍后我告诉你, “ 好, 准备好告诉我数字的序列 ” 。 这个步骤对应着调用发电机的函数, 返回一个发电机对象。 注意不要告诉我任何数字; 你只是拿起你的纸张和铅笔。 我问你, “ 请告诉我下一个数字 ” , 然后你告诉我第一个数字; 之后, 你等着我问你下一个数字。 这是你的任务, 也就是确定你所在的位置, 你已经说过的数字, 下一个数字是什么。 我不在乎细节。 这个步骤相当于在发电机对象上调用下一个( 发电机) 号码的方法。 ( Python 2, next) 注意, 这是一个发电机对象的方法; 在 Python 3, 它被命名为...

这是生成器所做的( 包含一个产值的函数 ) ; 它开始在第一个( ) 上执行, 当它做一个产值时暂停, 当要求下一个( ) 值时, 它会从最后一点继续 。 它的设计完全符合 Python 的循环协议, 协议描述如何按顺序要求值 。

迭代协议最著名的用户是 Python 的命令用户。 所以, 当你做 :

for item in sequence:

序列是否是一个列表、字符串、字典或上述生成对象并不重要;结果是一样的:您逐个阅读序列中的项目。

请注意,定义含有产出关键字的函数不是创建生成器的唯一方法;它只是创建生成器的最简单的方法。

欲知更准确的信息,请阅读Python文件中的迭代机类型、产量说明和发电机。

Python 中的输出关键字用于退出代码,而不会扰乱本地变量的状况,当函数再次被称作“执行”时,从我们离开代码的最后一点开始。

以下示例显示了产量的作用:

def counter():
    x=2
    while x < 5:
        yield x
        x += 1
        
print("Initial value of x: ", counter()) 

for y in counter():
    print(y)

上述代码产生以下输出:

Initial value of x:  <generator object counter at 0x7f0263020ac0>
2
3
4

关键要点

Python 的语法库使用输出关键字的存在来设定返回生成器的函数。 生成器是一种迭代器, 这是一种在 Python 中循环的主要方式。 生成器本质上是一个可回收的函数。 与返回返回值和结束函数不同的是, 生成关键字返回一个值和中止函数。 当下一个( g) 被调用到生成器时, 函数会恢复它所剩的功能。 只有当函数遇到一个明示或暗示返回时, 它才会实际结束 。

书写和理解发电机技术

一个理解和思考发电机的简单方法就是用印刷品()而不是产量来撰写一个常规函数:

def f(n):
    for x in range(n):
        print(x)
        print(x * 10)

注意它的产出:

>>> f(3)
0
0
1
10
2
2

3⁄4 ̄ ̧漯B

def f(n):
    for x in range(n):
        yield x
        yield x * 10

给 :

>>> list(f(3))
[0, 0, 1, 10, 2, 20]

迭代程序协议

答案“什么产量能做什么”可以是简短和简单的, 但是它是更大的世界的一部分, 所谓的“标准协议”。

在迭代协议的发送方,有两种相关的对象。可循环的物体是您可以绕过的东西。迭代器是跟踪环状状态的物体。

在迭代协议的消费方方面,我们调用可迭代对象的迭代者获得一个迭代者。然后我们调用下一个迭代者从迭代器中获取值。当没有更多数据时,会提出一个停止使用例外 :

>>> s = [10, 20, 30]    # The list is the "iterable"
>>> it = iter(s)        # This is the "iterator"
>>> next(it)            # Gets values out of an iterator
10
>>> next(it)
20
>>> next(it)
30
>>> next(it)
Traceback (most recent call last):
 ...
StopIteration

为了让这一切变得更容易, 对于卢布人来说,叫它, 下一个代表我们:

>>> for x in s:
...     print(x)
...   
10
20
30

一个人可以写一本关于这一切的书, 但这些都是关键点。 当我教授 Python 课程时, 我发现这是一个最起码的足够解释 来建立理解, 并马上开始使用它。 特别是, 用打印写一个函数, 测试它, 然后转换成收益的技巧, 似乎对 Python 各级程序员都有效 。

想象一下, 你创造了一个非凡的机器, 能够每天生成成千上万个灯泡。 机器用一个独特的序列号的盒子生成这些灯泡。 您没有足够的空间同时存储所有这些灯泡, 所以您想要调整它来生成点燃灯泡 。

Python 生成器与这个概念没有多大区别。 想象一下, 您有一个叫做条形码_ 生成器的函数, 可以为框生成独特的序列号 。 显然, 您可以在硬件( RAM) 的限制下, 由函数返回大量这样的条形码 。 一个更明智和空间效率更高的选项是按需生成这些序列号 。

机器代码 :

def barcode_generator():
    serial_number = 10000  # Initial barcode
    while True:
        yield serial_number
        serial_number += 1


barcode = barcode_generator()
while True:
    number_of_lightbulbs_to_generate = int(input("How many lightbulbs to generate? "))
    barcodes = [next(barcode) for _ in range(number_of_lightbulbs_to_generate)]
    print(barcodes)

    # function_to_create_the_next_batch_of_lightbulbs(barcodes)

    produce_more = input("Produce more? [Y/n]: ")
    if produce_more == "n":
        break

注意下个( 条码) 位 。

如你所见, 我们有一个自足的“ 功能” , 每次生成下一个独特的序列号。 此函数返回一个生成器 。 正如您所看到的, 我们并不是每次我们需要一个新的序列号时都会调用该功能, 而是使用下一个( ) , 给生成器来获取下一个序列号 。

低拉隔热器

更精确地说, 这个生成器是一个懒惰的循环器 。 循环器是一个帮助我们绕过一个天体序列的物体。 它被称为懒惰, 因为它在需要之前不会在内存中装入序列中的所有项目。 上一个示例中的下一个是从循环器获取下一个项目的清晰方式 。 隐含方式用于循环 :

for barcode in barcode_generator():
    print(barcode)

这将无穷尽地打印条形码, 但你不会失去内存 。

换句话说,一个发电机看起来像一个函数,但行为却像一个迭代器。

现实世界应用?

最后, 真实世界应用程序 。 当您在大序列中工作时, 它们通常是有用的 。 想象一下从有数十亿记录的磁盘上读取一个巨大的文件。 在您能够处理其内容之前, 在记忆中读取整个文件, 很可能是行不通的( 也就是说, 您将失去记忆 ) 。

输出允许您通过将循环部分乘以一个便于再利用的单独方法来写出更聪明的编剧。

假设你需要环绕电子表格的所有非空白行,对每行都做一些事情。

for i, row in df.iterrows(): #from the panda package for reading excel 
  if row = blank: # pseudo code, check if row is non-blank...
    continue
  if past_last_row: # pseudo code, check for end of input data
    break
  #### above is boring stuff, below is what we actually want to do with the data ###
  f(row)

如果您在类似循环中需要调用 g( row) , 您可能会发现自己重复了对数, 并重复了对数的检查, 有效行的检查是无聊、 复杂和容易出错的。 我们不想重复( DRY 原则 ) 。

您想要将检查每个记录的代码与实际处理行的代码区分开来, 例如 f( row) 和 g( row) 。

您可以设定一个函数, 将 f () 作为输入参数, 但是在一种方法中使用收益率要简单得多, 这种方法可以做所有关于检查有效行的无聊事情, 准备拨打 f () :

def valid_rows():
  for i, row in df.iterrows(): # iterate over each row of spreadsheet
    if row == blank: # pseudo code, check if row is non-blank...
      continue
    if past_last_row: # pseudo code, check for end of input data
      break
    yield i, row

请注意,该方法的每次调用都会返回下一行, 但如果所有行都读取, 并用于结束部分, 方法会正常返回。 下一次调用将开始新的循环 。

现在您可以在数据上写入迭代, 而不必重复对有效行进行无趣的检查( 现在根据自己的方法来计算) , 例如 :

for i, row in valid_rows():
  f(row)

for i, row in valid_rows():
  g(row)

nr_valid_rows = len(list(valid_rows()))

仅此而已。 请注意, 我还没有使用诸如 迭代器、 生成器、 协议、 共同常规等术语 。 我认为这个简单的例子 适用于我们日常的许多编码 。