Python 中产出关键字的用法是什么? 它能做什么?
例如,我试图理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。
又一个TRL;DR
列表中的迭代器 : 下一个 () 返回列表的下一个元素 。
迭代生成器: 下一个 () 将计算苍蝇上的下一个元素( 执行代码)
您可以通过下拨“无论流量如何复杂”,将产出/生成器视为手动运行外部控制流的一种方式(如继续循环一步),然后调用该输出/生成器作为手动运行外部控制流的一种方式。
注意 : 生成器不是一个正常的函数。 它会像本地变量( stack) 一样记住先前的状态 。 请参看其他答案或文章以详细解释 。 生成器只能重复一次 。 您可以不生产, 但不会是那么好, 所以它可以被视为“ 非常好” 的语言糖 。
简单使用实例 :
>>> def foo():
yield 100
yield 20
yield 3
>>> for i in foo(): print(i)
100
20
3
>>>
如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。
在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。
在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。
这样想吧:
迭代器只是具有下一个( ) 方法的对象的奇特探测术语。 因此, 产生式的函数最终会变成这样 :
原文:
def some_function():
for i in xrange(4):
yield i
for i in some_function():
print i
Python 翻译用上述代码所做的基本上就是:
class it:
def __init__(self):
# Start at -1 so that we get 0 when we add 1 below.
self.count = -1
# The __iter__ method will be called once by the 'for' loop.
# The rest of the magic happens on the object returned by this method.
# In this case it is the object itself.
def __iter__(self):
return self
# The next method will be called repeatedly by the 'for' loop
# until it raises StopIteration.
def next(self):
self.count += 1
if self.count < 4:
return self.count
else:
# A StopIteration exception is raised
# to signal that the iterator is done.
# This is caught implicitly by the 'for' loop.
raise StopIteration
def some_func():
return it()
for i in some_func():
print i
为了更深入地了解幕后发生的事情,
iterator = some_func()
try:
while 1:
print iterator.next()
except StopIteration:
pass
这更有意义还是更让人困惑?
我要指出,为了说明起见,这过于简单化。 )
又一个TRL;DR
列表中的迭代器 : 下一个 () 返回列表的下一个元素 。
迭代生成器: 下一个 () 将计算苍蝇上的下一个元素( 执行代码)
您可以通过下拨“无论流量如何复杂”,将产出/生成器视为手动运行外部控制流的一种方式(如继续循环一步),然后调用该输出/生成器作为手动运行外部控制流的一种方式。
注意 : 生成器不是一个正常的函数。 它会像本地变量( stack) 一样记住先前的状态 。 请参看其他答案或文章以详细解释 。 生成器只能重复一次 。 您可以不生产, 但不会是那么好, 所以它可以被视为“ 非常好” 的语言糖 。
收益率与返回率相似。区别是:
函数输出使函数可循环( 在以下示例中, 质数( n= 1) 函数成为可循环的 )。 它基本上意味着下次调用函数时, 它会从它离开的地方( 以产出表达式的线为后方) 继续 。
def isprime(n):
if n == 1:
return False
for x in range(2, n):
if n % x == 0:
return False
else:
return True
def primes(n = 1):
while(True):
if isprime(n): yield n
n += 1
for n in primes():
if n > 100: break
print(n)
在上述例子中, 如果是inprime( n) 是真实的, 它会返回质号。 在下一个迭代中, 它会从下一行继续
n += 1
想象一下, 你创造了一个非凡的机器, 能够每天生成成千上万个灯泡。 机器用一个独特的序列号的盒子生成这些灯泡。 您没有足够的空间同时存储所有这些灯泡, 所以您想要调整它来生成点燃灯泡 。
Python 生成器与这个概念没有多大区别。 想象一下, 您有一个叫做条形码_ 生成器的函数, 可以为框生成独特的序列号 。 显然, 您可以在硬件( RAM) 的限制下, 由函数返回大量这样的条形码 。 一个更明智和空间效率更高的选项是按需生成这些序列号 。
机器代码 :
def barcode_generator():
serial_number = 10000 # Initial barcode
while True:
yield serial_number
serial_number += 1
barcode = barcode_generator()
while True:
number_of_lightbulbs_to_generate = int(input("How many lightbulbs to generate? "))
barcodes = [next(barcode) for _ in range(number_of_lightbulbs_to_generate)]
print(barcodes)
# function_to_create_the_next_batch_of_lightbulbs(barcodes)
produce_more = input("Produce more? [Y/n]: ")
if produce_more == "n":
break
注意下个( 条码) 位 。
如你所见, 我们有一个自足的“ 功能” , 每次生成下一个独特的序列号。 此函数返回一个生成器 。 正如您所看到的, 我们并不是每次我们需要一个新的序列号时都会调用该功能, 而是使用下一个( ) , 给生成器来获取下一个序列号 。
低拉隔热器
更精确地说, 这个生成器是一个懒惰的循环器 。 循环器是一个帮助我们绕过一个天体序列的物体。 它被称为懒惰, 因为它在需要之前不会在内存中装入序列中的所有项目。 上一个示例中的下一个是从循环器获取下一个项目的清晰方式 。 隐含方式用于循环 :
for barcode in barcode_generator():
print(barcode)
这将无穷尽地打印条形码, 但你不会失去内存 。
换句话说,一个发电机看起来像一个函数,但行为却像一个迭代器。
现实世界应用?
最后, 真实世界应用程序 。 当您在大序列中工作时, 它们通常是有用的 。 想象一下从有数十亿记录的磁盘上读取一个巨大的文件。 在您能够处理其内容之前, 在记忆中读取整个文件, 很可能是行不通的( 也就是说, 您将失去记忆 ) 。