Python 中产出关键字的用法是什么? 它能做什么?
例如,我试图理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。
- 功能 - 返回。
发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。
names = ['Sam', 'Sarah', 'Thomas', 'James']
# Using function
def greet(name) :
return f'Hi, my name is {name}.'
for each_name in names:
print(greet(each_name))
# Output:
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.
# using generator
def greetings(names) :
for each_name in names:
yield f'Hi, my name is {each_name}.'
for greet_name in greetings(names):
print (greet_name)
# Output:
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.
发电机看起来像一个函数,但行为举止却像一个迭代器。
发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。
def function():
yield 1 # return this first
yield 2 # start continue from here (yield don't execute above code once executed)
yield 3 # give this at last (yield don't execute above code once executed)
for processed_data in function():
print(processed_data)
#Output:
>>>1
>>>2
>>>3
注:放弃不应在尝试中.最终建造。
简单解答
当函数包含至少一个输出语句时,函数自动成为生成函数。当您调用生成函数时, python 在生成函数中执行代码,直到生成语句发生。 当您调用生成函数时, python 继续从冻结位置执行生成函数中的代码,直到生成语句发生反复发生。 生成函数执行代码,直到生成函数在没有生成语句的情况下运行结束。
基准基准基准基准基准基准基准
创建列表并返回它 :
def my_range(n):
my_list = []
i = 0
while i < n:
my_list.append(i)
i += 1
return my_list
@profile
def function():
my_sum = 0
my_values = my_range(1000000)
for my_value in my_values:
my_sum += my_value
function()
结果有:
Total time: 1.07901 s
Timer unit: 1e-06 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
9 @profile
10 def function():
11 1 1.1 1.1 0.0 my_sum = 0
12 1 494875.0 494875.0 45.9 my_values = my_range(1000000)
13 1000001 262842.1 0.3 24.4 for my_value in my_values:
14 1000000 321289.8 0.3 29.8 my_sum += my_value
Line # Mem usage Increment Occurences Line Contents
============================================================
9 40.168 MiB 40.168 MiB 1 @profile
10 def function():
11 40.168 MiB 0.000 MiB 1 my_sum = 0
12 78.914 MiB 38.746 MiB 1 my_values = my_range(1000000)
13 78.941 MiB 0.012 MiB 1000001 for my_value in my_values:
14 78.941 MiB 0.016 MiB 1000000 my_sum += my_value
在飞行上生成值 :
def my_range(n):
i = 0
while i < n:
yield i
i += 1
@profile
def function():
my_sum = 0
for my_value in my_range(1000000):
my_sum += my_value
function()
结果有:
Total time: 1.24841 s
Timer unit: 1e-06 s
Line # Hits Time Per Hit % Time Line Contents
==============================================================
7 @profile
8 def function():
9 1 1.1 1.1 0.0 my_sum = 0
10
11 1000001 895617.3 0.9 71.7 for my_value in my_range(1000000):
12 1000000 352793.7 0.4 28.3 my_sum += my_value
Line # Mem usage Increment Occurences Line Contents
============================================================
7 40.168 MiB 40.168 MiB 1 @profile
8 def function():
9 40.168 MiB 0.000 MiB 1 my_sum = 0
10
11 40.203 MiB 0.016 MiB 1000001 for my_value in my_range(1000000):
12 40.203 MiB 0.020 MiB 1000000 my_sum += my_value
摘要摘要摘要
生成器函数需要稍多一点时间来执行, 而不是返回列表但少用内存的函数 。
简单使用实例 :
>>> def foo():
yield 100
yield 20
yield 3
>>> for i in foo(): print(i)
100
20
3
>>>
如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。
在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。
在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。