Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

这是关于产量的心理形象。

我想把一条线视为有堆叠(即使它不是用这种方式执行的)。

当调用一个普通函数时, 它会将其本地变量放入堆栈, 进行一些计算, 然后清除堆栈和返回。 其本地变量的值再也不会被看到 。

当它的代码开始运行时( 即函数被调用后, 返回一个生成对象, 其下一个( ) 方法随后被引用) , 它同样将其本地变量放在堆叠上, 并进行一段时间的计算 。 但是, 当它点击收益语句时, 在清理堆叠中的一部分并返回之前, 它会对其本地变量进行截图, 并将其存储在生成对象中 。 它还写下它目前位于代码中的位置( 即特定收益语句 ) 。

所以这是一种冷冻功能 发电机挂在了上面

当下一个 () 后被调用时, 它会从堆栈上取回函数的物品, 并重新激活它。 函数继续从剩余部分进行计算, 无视它刚刚在冷藏室里度过了一个永恒的时间 。

比较以下实例:

def normalFunction():
    return
    if False:
        pass

def yielderFunction():
    return
    if False:
        yield 12

当我们称第二个函数为第二个函数时, 它的行为与第一个函数非常不同。 收益声明可能无法达到, 但是如果它存在任何地方, 它会改变我们正在处理的东西的性质 。

>>> yielderFunction()
<generator object yielderFunction at 0x07742D28>

调用 powerFunction () 不运行它的代码, 而是让一个生成器出自代码 。 (也许用 powerFunction () 的前缀命名这种东西作为可读性是一个好主意 。)

>>> gen = yielderFunction()
>>> dir(gen)
['__class__',
 ...
 '__iter__',    #Returns gen itself, to make it work uniformly with containers
 ...            #when given to a for loop. (Containers return an iterator instead.)
 'close',
 'gi_code',
 'gi_frame',
 'gi_running',
 'next',        #The method that runs the function's body.
 'send',
 'throw']

gi_ code 和 gi_ frame 字段是存放冻结状态的地方。 使用 dir (.) 来探索它们, 我们可以确认上面的心理模型是可信的 。

其他回答

Python 的输出关键字是做什么的 ?

答复大纲/摘要

函数, 调用时, 返回生成器。 发电机是循环器, 因为它们执行循环程序, 以便您可以对它进行循环。 也可以发送一个发电机信息, 使其在概念上成为共同的常规。 在 Python 3 中, 您可以将一个发电机从一个发电机到另一个发电机, 从两个方向调用。 (附录: 包括顶部的答案在内的几个答案, 并讨论在发电机中使用返回的方法 。)

发电机:

收益率只是功能定义中的法律内涵,而将收益率列入功能定义使其返回产生者。

发电机的想法来自其他语言(见脚注1),其实施方式各有不同。 在Python的发电机中,代码的执行在生产点被冻结。当发电机被调用(方法在下文讨论)时,再恢复执行,然后冻结在下一个生产点。

输出提供了执行循环协议的简单方法,由以下两种方法定义:__iter__和__ext_。这两种方法都使对象成为可与收藏模块的Exerator摘要基础类进行打印的复制器。

def func():
    yield 'I am'
    yield 'a generator!'

让我们进行一些反省:

>>> type(func)                 # A function with yield is still a function
<type 'function'>
>>> gen = func()
>>> type(gen)                  # but it returns a generator
<type 'generator'>
>>> hasattr(gen, '__iter__')   # that's an iterable
True
>>> hasattr(gen, '__next__')   # and with .__next__
True                           # implements the iterator protocol.

生成器类型是一个子迭代器类型 :

from types import GeneratorType
from collections.abc import Iterator

>>> issubclass(GeneratorType, Iterator)
True

如有必要,我们可以这样打字检查:

>>> isinstance(gen, GeneratorType)
True
>>> isinstance(gen, Iterator)
True

迭代器的一个特征是,一旦耗竭,您无法再利用或重置它:

>>> list(gen)
['I am', 'a generator!']
>>> list(gen)
[]

如果你想再次使用其功能,你必须再做一次(见脚注2):

>>> list(func())
['I am', 'a generator!']

可以按方案生成数据,例如:

def func(an_iterable):
    for item in an_iterable:
        yield item

上述简单生成器也相当于以下生成器 -- -- 由于Python 3.3, 您可以使用以下来源的产量:

def func(an_iterable):
    yield from an_iterable

但是,也允许向次级发电机授权,这一点将在下一节 " 与次级水泥合作授权 " 中加以解释。

计票:

窗体中显示一个表达式,该表达式允许将数据发送到生成器(见脚注3)

以下是一个例子,请注意收到的变量,该变量将指向发送到生成方的数据:

def bank_account(deposited, interest_rate):
    while True:
        calculated_interest = interest_rate * deposited 
        received = yield calculated_interest
        if received:
            deposited += received


>>> my_account = bank_account(1000, .05)

首先, 我们必须排队, 下一个是内建函数 。 它会调用合适的下一个或 下一步方法, 取决于您使用的 Python 版本 :

>>> first_year_interest = next(my_account)
>>> first_year_interest
50.0

现在我们可以将数据发送到生成器。 (“终结者”和“下一个”是一样的 ) :

>>> next_year_interest = my_account.send(first_year_interest + 1000)
>>> next_year_interest
102.5

合作社代表团到分科诊所分科

现在,请记住,Python 3的产量是可以得到的。 这使得我们可以将共同路线 委托给一个子烹饪:


def money_manager(expected_rate):
    # must receive deposited value from .send():
    under_management = yield                   # yield None to start.
    while True:
        try:
            additional_investment = yield expected_rate * under_management 
            if additional_investment:
                under_management += additional_investment
        except GeneratorExit:
            '''TODO: write function to send unclaimed funds to state'''
            raise
        finally:
            '''TODO: write function to mail tax info to client'''
        

def investment_account(deposited, manager):
    '''very simple model of an investment account that delegates to a manager'''
    # must queue up manager:
    next(manager)      # <- same as manager.send(None)
    # This is where we send the initial deposit to the manager:
    manager.send(deposited)
    try:
        yield from manager
    except GeneratorExit:
        return manager.close()  # delegate?

现在我们可以将功能委托给一个子生成器 并且它可以被一个发电机使用 就像上面那样:

my_manager = money_manager(.06)
my_account = investment_account(1000, my_manager)
first_year_return = next(my_account) # -> 60.0

现在模拟在账户中再增加1000, 加上账户的回报( 60.0 ) :

next_year_return = my_account.send(first_year_return + 1000)
next_year_return # 123.6

从PEP 380中,您可以阅读更多关于产量的确切语义。

其他方法:关闭和投掷

关闭方法在功能执行被冻结时提升发电机输出。 也可以被 __ del__ 调用, 这样您就可以设置任何清理代码, 用于处理发电机输出 :

my_account.close()

您也可以丢弃一个例外,该例外可在生成器中处理,或向用户传播:

import sys
try:
    raise ValueError
except:
    my_manager.throw(*sys.exc_info())

提高:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
  File "<stdin>", line 6, in money_manager
  File "<stdin>", line 2, in <module>
ValueError

结论 结论 结论 结论 结论

我认为,我已处理了下列问题的所有方面:

Python 的输出关键字是做什么的 ?

事实证明,产量是很大的。我相信我可以为此再增加更详尽的例子。如果你需要更多的或有建设性的批评,请在下面评论,让我知道。


附录:

顶级/接受的答复的优先程度**

使用列表作为示例。 参见我上面的引用, 但概括地说: 循环含有 ` irit_ 的方法返回一个迭代器。 一个迭代器另外提供了一种 . next_ 的方法, 以循环为暗号, 以循环为代号, 直到它升起 停止 试运行, 一旦它确实升起 停止 试运行, 它会继续这样做 。 然后它会使用一个发电机表达方式来描述一个发电机。 由于一个发电机表达方式只是创建一个代用器的方便方式, 它只会混淆物质, 而我们还没有到达产值部分 。 在控制发电机耗竭时, 他调用 . next 方法( 只在 Python 2 中有效 ) , 而不是使用 内建函数, 下一步。 调用下一个 (obj) 将是一个适当的间接层, 因为他的代码在 Python 3. Itertools 中不起作用 。 这与结果完全无关 。 没有讨论 与 Python 3 中产生新功能收益的方法提供的方法和 Python 。

上方/接受的回答是一个非常不完整的回答。

回答的精度表示在发电机的表达或理解中产生产量。

语法目前允许列表理解中的任何表达式 。

expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |
                     ('=' (yield_expr|testlist_star_expr))*)
...
yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist

由于产量是一种表达方式,有些人认为在理解或生成方表达方式中使用产量是令人感兴趣的,尽管没有提出特别好的使用方式。

CPython核心开发商正在讨论其备抵的折旧问题。

2017年1月30日19:05时,布雷特坎农写道:在太阳上,2017年1月29日,16:39克雷格·罗德里格斯写道:我同意这两种方法。把事情保留在Python 3的状态是不对的,IMHO。我的投票是语法错误,因为你没有得到你期望的语法。我同意这对我们来说是一个明智的结局,因为任何依赖当前行为的代码都非常聪明,无法维持。在到达那里时,我们可能想要:在2.7的Py3k警告中,用3.7的Py3k警告来表示警告或破坏警告。x语法错误,Nick。 -- Nick Coghlan ncoghlan at gmail.com {Brisbane,澳大利亚,Gmail. com {Brisbane。

此外,还有一个未决问题(10544)似乎指向从来就不是一个好主意(PyPy, PyPy, 写在Python的Python执行文件,

底线,直到CPython的开发者告诉我们别的情况: 不要在生成器表达或理解中放出产量。

发电机中的回程声明

在Python 3 中:

在发电机函数中, 返回语句表示发电机已完成, 并将导致 StopLiveration 上升。 返回的值( 如果有的话) 用作构建 StopLiveration 的参数, 并成为 StopIturation. value 属性 。

Python 2 中的历史注释 : “ 在生成器函数中, 返回语句不允许包含表达式_ 列表 。 在此情况下, 光返回表示生成器已经完成, 并将导致停止使用 。 ” 表达式列表基本上是用逗号分隔的任何多个表达式 - 基本上在 Python 2 中, 您可以返回停止生成器, 但无法返回一个值 。

脚注脚注

将生成器的概念引入 Python 的建议中引用了语言 CLU、 Sather 和 图标 。 一般的想法是, 函数可以维持内部状态, 并产生用户需要的中间数据点 。 这承诺在性能上优于其他方法, 包括Python 线性线性, 某些系统中甚至没有这种系统。 这意味着, 范围天体虽然是可循环的, 但却不是迭代器, 因为它们是可以再利用的 。 和列表一样, 它们的 ` eter_ 方法返回替换器对象 。 收益最初是作为声明引入的, 意思是它只能在代码块的线性起始处出现 。 现在, 收益产生一种收益表达方式 。 https://docs. python.org/2/reference/spoint_stmts.html# grammar- token- yeld_stmt 。 提出这一修改是为了让用户将数据发送到生成器中。 。 要发送数据, 发送数据时, 就必须将它指定它为某种东西, 。

又一个TRL;DR

列表中的迭代器 : 下一个 () 返回列表的下一个元素 。

迭代生成器: 下一个 () 将计算苍蝇上的下一个元素( 执行代码)

您可以通过下拨“无论流量如何复杂”,将产出/生成器视为手动运行外部控制流的一种方式(如继续循环一步),然后调用该输出/生成器作为手动运行外部控制流的一种方式。

注意 : 生成器不是一个正常的函数。 它会像本地变量( stack) 一样记住先前的状态 。 请参看其他答案或文章以详细解释 。 生成器只能重复一次 。 您可以不生产, 但不会是那么好, 所以它可以被视为“ 非常好” 的语言糖 。

要理解它的产值函数,人们必须理解发电机是什么。此外,在理解发电机之前,你必须理解易用的东西。易用 : 易用 : 要创建列表, 您自然需要能够逐个读取每个元素。 逐项读取其项目的过程被称为迭代 :

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3 

My list 是可替换的。 当您使用列表理解值时, 您会创建一个列表, 因此该列表是可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4 

所有可用于... 的数据结构都是可循环的; 列表、 字符串、 文件...

这些惯用方法很方便,因为您可以随意阅读,但您可以将所有值存储在记忆中,当您有许多值时,这些值并不总是可取的。 生成器: 生成器 A 也是一种迭代器, 一种特殊的迭代器, 只能迭代一次。 生成器不会将所有值存储在记忆中, 而是在苍蝇上生成值 :

发电机:发电机、发电机、发电机发电,但不储存能源;)

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4 

只要使用 () 而不是 [] , 列表理解就会变成发电机理解。 但是, 由于发电机只能使用一次, 您无法在我的生成器中执行 i 第二次 : 生成器计算 0, 然后丢弃它, 然后计算 1, 最后一次计算 4 。 典型的黑色盲人打破玉米 。

产出关键字的使用方式与返回相同,但函数返回生成器。

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() 
>>> print(mygenerator) 
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4 

这个例子本身是毫无用处的,但是当您需要函数返回大量数值,而只需要读一次,使用产量就方便了。

要掌握收益率,需要清楚的是,当函数被调用时,函数正文中写入的代码将不会运行。函数只返回生成对象。启动者可能会对此感到困惑。

第二,明白代码会从每次使用发电机时留下的代码中继续使用。

现在最困难的部分是:

第一次调用您函数所创建的生成器对象时, 它会运行函数中的代码, 从开始一直运行到产生, 然后返回循环的第一个值。 然后, 以后的每次调用都会运行您在函数中写入的循环的下一个迭代, 并返回下一个值。 这将一直持续到生成器被视为空, 当函数运行时没有被击中时该生成。 这可能是因为循环已经结束, 或者因为您不再满足于“ if/ else ” 。

个人理解 我希望帮助你!

失败给了你一台发电机

def get_odd_numbers(i):
    return range(1, i, 2)
def yield_odd_numbers(i):
    for x in range(1, i, 2):
       yield x
foo = get_odd_numbers(10)
bar = yield_odd_numbers(10)
foo
[1, 3, 5, 7, 9]
bar
<generator object yield_odd_numbers at 0x1029c6f50>
bar.next()
1
bar.next()
3
bar.next()
5

正如你可以看到的那样,在第一种情况下,Foo同时持有完整的记忆列表。对于包含5个元素的清单来说,这不是什么大不了的事,但是如果你想列出500万个元素的清单,那又会怎样?这不仅仅是一个巨大的记忆食用器,在函数被调用的时候,它还要花费很多时间来构建这个功能。

在第二种情况下, 酒吧只给您一台发电机。 发电机是一个可循环的, 意思是您可以在循环中使用它, 等等, 但每个值只能存取一次。 所有值也并非同时存储在记忆中; 生成器的“ 成员” 对象, 上次您称之为“ 成员” 时, 它在循环中。 这样, 如果您使用一个可( 说) 的转号, 计数为500亿, 你不必一次数到500亿, 然后存储500亿的数值来进行计算。

再者,这是一个相当巧妙的例子,如果你真想数到500亿,你可能会使用滑板。 () :

这是发电机中最简单的使用实例。 正如您所说, 它可以用来写高效的变换, 使用产量将东西推到调用堆叠上, 而不是使用某种堆叠变量。 发电机也可以用于专门的树道, 以及各种其它方式 。

以下是一些Python的例子, 说明如何实际安装发电机, 仿佛Python没有提供同声糖:

作为Python发电机:

from itertools import islice

def fib_gen():
    a, b = 1, 1
    while True:
        yield a
        a, b = b, a + b

assert [1, 1, 2, 3, 5] == list(islice(fib_gen(), 5))

使用地法关闭代替发电机

def ftake(fnext, last):
    return [fnext() for _ in xrange(last)]

def fib_gen2():
    #funky scope due to python2.x workaround
    #for python 3.x use nonlocal
    def _():
        _.a, _.b = _.b, _.a + _.b
        return _.a
    _.a, _.b = 0, 1
    return _

assert [1,1,2,3,5] == ftake(fib_gen2(), 5)

使用关闭物体而不是发电机(因为关闭物体和物体是等效的)

class fib_gen3:
    def __init__(self):
        self.a, self.b = 1, 1

    def __call__(self):
        r = self.a
        self.a, self.b = self.b, self.a + self.b
        return r

assert [1,1,2,3,5] == ftake(fib_gen3(), 5)