Python 中产出关键字的用法是什么? 它能做什么?
例如,我试图理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。
许多人使用回报而不是生产,但在某些情况下,收益可以更有效和更便于工作。
这里的例子绝对是收成最佳的:
返回( 在函数)
import random
def return_dates():
dates = [] # With 'return' you need to create a list then return it
for i in range(5):
date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
dates.append(date)
return dates
产出(在函数)
def yield_dates():
for i in range(5):
date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
yield date # 'yield' makes a generator automatically which works
# in a similar way. This is much more efficient.
呼叫功能
dates_list = return_dates()
print(dates_list)
for i in dates_list:
print(i)
dates_generator = yield_dates()
print(dates_generator)
for i in dates_generator:
print(i)
两种函数都做同样的事情, 但产量使用三行而不是五行, 并且有一个更少的变量要担心。
这是代码的结果:
调
您可以看到两个函数都做相同的事情。 唯一的区别是 返回_ dates () 给出了列表, 而 收益_ dates () 给出了生成器 。
真实生活中的范例就是 逐行读取文件行 或者你只是想制造一个发电机
从方案拟订的角度来看,迭代器是作为散装件执行的。
为实施同时执行的迭代器、发电机和线形集合等,人们使用发往有调度员的关闭对象的电文,用发件人对“信息”的回答。
"下一步"是给一个封口发送的信息 由"标准"电话创建
有多种方法可以实施此计算。 我使用了突变, 但可以通过返回当前值和下一个生成者( 使其具有优先透明度 ) , 进行这种不发生突变的计算。 鼠标使用一些中间语言对初始程序进行一系列转换, 其中之一是将产出操作者转换为使用更简单的操作员的某种语言。
这是如何重写产量的演示, 它使用 R6RS 的结构, 但语义与 Python 的相同 。 这是相同的计算模式, 只需要修改语法, 才能使用 Python 的 产量重写 。
- (define gen (lambda (l) (define gen (lambda (l)) (define emple (lambda (lambda () ()) (if (null? l)) 'END (let ((v (car l))(set))(l (cdr))) (lambda (m) (cket m) (case m ('yield (yeld)(yeld))('ield))('iint (lamb) (lambda (lab) (lambda (data) (data) (l data))) ())) ) - (define 流 (gen 'ield (gen'(1,2 3 ) )) - (流 (流 ield) ) ) - (Live END - (Slead) (流 (流 ) (流 ) (流 (流 流 (流 流 流 流 流 流 ) 'ield) 'end - >
和每个答案一样, 收益被用于创建序列生成器。 它用于动态生成某些序列。 例如, 在按行阅读网络文件行时, 您可以使用以下的收益函数 :
def getNextLines():
while con.isOpen():
yield con.read()
您可在您的代码中使用以下代码:
for line in getNextLines():
doSomeThing(line)
执行控制控制
执行控制将会从 GetNextLines () 转到执行时的循环。 因此, 每次引用 NextLines () 时, 执行都会从上次暂停处开始 。
因此,简言之,一个函数具有以下代码
def simpleYield():
yield "first time"
yield "second time"
yield "third time"
yield "Now some useful value {}".format(12)
for i in simpleYield():
print i
将打印
"first time"
"second time"
"third time"
"Now some useful value 12"