Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

还有一件事情要提: 产量的函数其实不一定要终止。我写了这样的代码:

def fib():
    last, cur = 0, 1
    while True: 
        yield cur
        last, cur = cur, last + cur

这样我就可以用在别的代码里了

for f in fib():
    if some_condition: break
    coolfuncs(f);

它确实有助于简化一些问题,使一些事情更容易处理。

其他回答

生成关键字用于查点/字符,其中函数预期将返回一个输出。我想引用这个非常简单的例A:

# example A
def getNumber():
    for r in range(1,10):
        return r

以上函数只返回一次, 即使它被多次调用。 现在如果我们以收益率替换返回, 如例B :

# example B
def getNumber():
    for r in range(1,10):
        yield r

当第一次叫2时,它会返回1,当再次叫2时,3,4,然后它会递增到10。

虽然B的例子在概念上是真实的,但要用Python 3来称呼它,我们必须采取以下行动:


g = getNumber() #instance
print(next(g)) #will print 1
print(next(g)) #will print 2
print(next(g)) #will print 3

# so to assign it to a variables
v = getNumber()
v1 = next(v) #v1 will have 1
v2 = next(v) #v2 will have 2
v3 = next(v) #v3 will have 3

用于创建生成器 。 将生成器想象成一个迭代器 highc , 给您每个迭代值 。 当您在循环中使用 收益率 时, 就会得到一个生成器对象, 您可以用该对象从循环中以迭接方式从循环中获取项目 。

又一个TRL;DR

列表中的迭代器 : 下一个 () 返回列表的下一个元素 。

迭代生成器: 下一个 () 将计算苍蝇上的下一个元素( 执行代码)

您可以通过下拨“无论流量如何复杂”,将产出/生成器视为手动运行外部控制流的一种方式(如继续循环一步),然后调用该输出/生成器作为手动运行外部控制流的一种方式。

注意 : 生成器不是一个正常的函数。 它会像本地变量( stack) 一样记住先前的状态 。 请参看其他答案或文章以详细解释 。 生成器只能重复一次 。 您可以不生产, 但不会是那么好, 所以它可以被视为“ 非常好” 的语言糖 。

收益率和返回一样, 它会返回任何您告诉它的东西( 作为生成器 ) 。 区别在于下次您调用生成器时, 执行从最后一次调用开始到收益语句 。 与返回不同的是, 当收益发生时, 堆叠框架不会被清理, 但是控制会被转回调回调用方, 因此下次调用函数时, 它的状态将会恢复 。

在您的代码中,函数获取_child_camedates 的动作就像一个迭代器,这样当您扩展列表时,它会一次在新列表中添加一个元素 。

列表。extendend calls a plerator until it's fulled it's explator until. 如果是您所贴的代码样本, 只需将图普还给列表, 并附加到列表中, 就会更加清楚 。

- 功能 - 返回。

发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。

names = ['Sam', 'Sarah', 'Thomas', 'James']


# Using function
def greet(name) :
    return f'Hi, my name is {name}.'
    
for each_name in names:
    print(greet(each_name))

# Output:   
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.


# using generator
def greetings(names) :
    for each_name in names:
        yield f'Hi, my name is {each_name}.'
 
for greet_name in greetings(names):
    print (greet_name)

# Output:    
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.

发电机看起来像一个函数,但行为举止却像一个迭代器。

发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。

def function():
    yield 1 # return this first
    yield 2 # start continue from here (yield don't execute above code once executed)
    yield 3 # give this at last (yield don't execute above code once executed)

for processed_data in function(): 
    print(processed_data)
    
#Output:

>>>1
>>>2
>>>3

注:放弃不应在尝试中.最终建造。