Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

这样想吧:

迭代器只是具有下一个( ) 方法的对象的奇特探测术语。 因此, 产生式的函数最终会变成这样 :

原文:

def some_function():
    for i in xrange(4):
        yield i

for i in some_function():
    print i

Python 翻译用上述代码所做的基本上就是:

class it:
    def __init__(self):
        # Start at -1 so that we get 0 when we add 1 below.
        self.count = -1

    # The __iter__ method will be called once by the 'for' loop.
    # The rest of the magic happens on the object returned by this method.
    # In this case it is the object itself.
    def __iter__(self):
        return self

    # The next method will be called repeatedly by the 'for' loop
    # until it raises StopIteration.
    def next(self):
        self.count += 1
        if self.count < 4:
            return self.count
        else:
            # A StopIteration exception is raised
            # to signal that the iterator is done.
            # This is caught implicitly by the 'for' loop.
            raise StopIteration

def some_func():
    return it()

for i in some_func():
    print i

为了更深入地了解幕后发生的事情,

iterator = some_func()
try:
    while 1:
        print iterator.next()
except StopIteration:
    pass

这更有意义还是更让人困惑?

我要指出,为了说明起见,这过于简单化。 )

其他回答

这里所有的答案都很好,但其中只有一个(最受投票支持的)与你的代码如何运作有关。其他的与一般的发电机有关,也与它们如何运作有关。

所以,我不重复发电机是什么或产量是什么;我认为这些都包含在现有的答案中。然而,在花了几个小时试图理解一个与你的代码相似的代码之后,我将打破它是如何运作的。

您的代码绕过二进制树结构。 让我们以这棵树为例:

    5
   / \
  3   6
 / \   \
1   4   8

另一个简单的二进制搜索树的十字路口:

class Node(object):
..
def __iter__(self):
    if self.has_left_child():
        for child in self.left:
            yield child

    yield self.val

    if self.has_right_child():
        for child in self.right:
            yield child

执行代码在树形对象上,它执行__iter___这样:

def __iter__(self):

    class EmptyIter():
        def next(self):
            raise StopIteration

    if self.root:
        return self.root.__iter__()
    return EmptyIter()

候选人发言可用树上元素替换; Python 翻译为

it = iter(TreeObj)  # returns iter(self.root) which calls self.root.__iter__()
for element in it: 
    .. process element .. 

因为节点. _ iter_ 函数是一个生成器, 内部的代码按迭代执行 。 所以执行会是这样的 :

根元素是第一个; 检查它是否留下了孩子, 并且要循环它们( 因为我们叫它它 1 ) 。 它有一个孩子, 所以执行它。 给孩子自己。 左左为自己创建一个新的循环器 。 左是节点对象本身( it2) 。 左是同一逻辑 2 , 新的循环器已经创建( it3) 。 现在我们到达了树的左端 。 现在我们到达了树的左端。 它3 没有留下孩子, 所以它会继续下去并产生自我。 在下一个呼叫( it3) 时, 它会提高停止作用, 因为它没有正确的孩子( 到达函数的尽头, 但没有产生任何效果) 。 它1 和它2 仍然在活动 - 它们没有耗尽, 调用下一个( it2) 将产生值, 而不是提高停止作用 。 现在我们回到了它的上下文 2 , 并调下一个( it2) 继续它停止它的地方 : 在产生子声明之后 。 由于它没有更多的剩余孩子, 它会继续持续并产生自我 val 。 val 。

这里的渔获是,每次迭代都会产生次标准来绕过树,并保持当前迭代的状态。 一旦它到达终点,它就会绕过堆叠,并按正确的顺序返回值( 最小的收益值首先 ) 。

您的代码示例在一种不同的技术中做了类似的事情: 它为每个孩子输入了一个元素列表, 然后在下一个迭代中, 它弹出它, 并在当前对象上运行函数代码( 也就是自定义 ) 。

我希望这对这个传奇话题有一点帮助,我花了好几个小时来画这个过程来理解它。

所有的答案都是伟大的, 但对于新人来说有点困难。

我猜你已经得知回程声明了

作为类比,回归和收益是双胞胎。 回归意味着“ 回归和停止 ” , 而“ 回归”则意味着“回归,但继续 ” 。

尝试获得一份有回报的 num_ 列表 。

def num_list(n):
    for i in range(n):
        return i

运行它:

In [5]: num_list(3)
Out[5]: 0

你看,你只得到一个数字,而不是一个他们的名单。返回永远不允许你快乐地获胜,只要执行一次就退出。

产生结果

将返回替换为产出 :

In [10]: def num_list(n):
    ...:     for i in range(n):
    ...:         yield i
    ...:

In [11]: num_list(3)
Out[11]: <generator object num_list at 0x10327c990>

In [12]: list(num_list(3))
Out[12]: [0, 1, 2]

现在,你赢得了所有的数字。

与一次运行和停止的返回相比, 一次运行和一次运行, 一次运行和一次运行。 您可以将返回解释为一个返回, 一次返回作为全部返回。 这叫“ 易动 ” 。

再多走一步,我们就可以重新写出回报的收益声明

In [15]: def num_list(n):
    ...:     result = []
    ...:     for i in range(n):
    ...:         result.append(i)
    ...:     return result

In [16]: num_list(3)
Out[16]: [0, 1, 2]

这是关于产量的核心。

列表返回输出与目标产出的区别是:

您总是可以从列表对象中获取 [0, 1, 2] , 但只能从“ 对象输出输出” 中提取一次 。 因此, 它有一个新的名称生成对象, 如 Out[ 11] 所示 : <generator 对象 num_ list at 0x10327c990> 。

最后,作为格罗克语的比喻:

双胞胎名单和发电机是双胞胎

和每个答案一样, 收益被用于创建序列生成器。 它用于动态生成某些序列。 例如, 在按行阅读网络文件行时, 您可以使用以下的收益函数 :

def getNextLines():
   while con.isOpen():
       yield con.read()

您可在您的代码中使用以下代码:

for line in getNextLines():
    doSomeThing(line)

执行控制控制

执行控制将会从 GetNextLines () 转到执行时的循环。 因此, 每次引用 NextLines () 时, 执行都会从上次暂停处开始 。

因此,简言之,一个函数具有以下代码

def simpleYield():
    yield "first time"
    yield "second time"
    yield "third time"
    yield "Now some useful value {}".format(12)

for i in simpleYield():
    print i

将打印

"first time"
"second time"
"third time"
"Now some useful value 12"

python 的输出与返回语句类似,但有些差异除外。如果要从函数返回多个值,返回语句将把所有值都作为列表返回,并将其存储在调用符块的内存中。但如果我们不想使用额外的内存,会怎样?相反,我们需要在需要时从函数中获取该值。这是产出的来源。考虑以下函数:

def fun():
   yield 1
   yield 2
   yield 3

打电话的人是:

def caller():
   print ('First value printing')
   print (fun())
   print ('Second value printing')
   print (fun())
   print ('Third value printing')
   print (fun())

上述代码段(调用函数),如果调用,产出:-

First value printing
1
Second value printing
2
Third value printing
3

从上文可以看出, 产出返回其调用器的值, 但当函数再次调用时, 它不会从第一个语句开始, 而是从产出后右侧的语句开始。 在上述示例中, “ 第一值打印” 打印, 函数被调用。 1 被回传并打印。 然后, 打印“ 第二值打印” , 并再次调用有趣 () 。 它不打印 1 (第一个语句) , 而是返回 2 , 也就是说, 仅从产出 1 之后的语句 。 同样的程序会进一步重复 。

又一个TRL;DR

列表中的迭代器 : 下一个 () 返回列表的下一个元素 。

迭代生成器: 下一个 () 将计算苍蝇上的下一个元素( 执行代码)

您可以通过下拨“无论流量如何复杂”,将产出/生成器视为手动运行外部控制流的一种方式(如继续循环一步),然后调用该输出/生成器作为手动运行外部控制流的一种方式。

注意 : 生成器不是一个正常的函数。 它会像本地变量( stack) 一样记住先前的状态 。 请参看其他答案或文章以详细解释 。 生成器只能重复一次 。 您可以不生产, 但不会是那么好, 所以它可以被视为“ 非常好” 的语言糖 。