Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

以下是一些Python的例子, 说明如何实际安装发电机, 仿佛Python没有提供同声糖:

作为Python发电机:

from itertools import islice

def fib_gen():
    a, b = 1, 1
    while True:
        yield a
        a, b = b, a + b

assert [1, 1, 2, 3, 5] == list(islice(fib_gen(), 5))

使用地法关闭代替发电机

def ftake(fnext, last):
    return [fnext() for _ in xrange(last)]

def fib_gen2():
    #funky scope due to python2.x workaround
    #for python 3.x use nonlocal
    def _():
        _.a, _.b = _.b, _.a + _.b
        return _.a
    _.a, _.b = 0, 1
    return _

assert [1,1,2,3,5] == ftake(fib_gen2(), 5)

使用关闭物体而不是发电机(因为关闭物体和物体是等效的)

class fib_gen3:
    def __init__(self):
        self.a, self.b = 1, 1

    def __call__(self):
        r = self.a
        self.a, self.b = self.b, self.a + self.b
        return r

assert [1,1,2,3,5] == ftake(fib_gen3(), 5)

其他回答

对于那些更喜欢最低限度工作实例的人来说,考虑一下这次交互式的Python会议:

>>> def f():
...   yield 1
...   yield 2
...   yield 3
... 
>>> g = f()
>>> for i in g:
...   print(i)
... 
1
2
3
>>> for i in g:
...   print(i)
... 
>>> # Note that this time nothing was printed

理解产出的快捷键

当您看到带产出语句的函数时,应用这个简单易懂的把戏来理解会发生什么:

在函数开始处插入行结果 = []。 以结果替换每个输出。 附录( 扩展) 。 在函数底部插入一行返回结果 。 耶 - 不再生成语句! 读取并解析代码。 将函数与原始定义比较 。

这个骗局也许能让你了解函数背后的逻辑, 但实际的收益率与列表法中发生的情况大不相同。 在许多情况下, 收益率法会提高记忆效率和速度。 在其他情况下, 这个骗局会让你陷入一个无限的循环, 即使最初的功能运作良好。 阅读以学习更多...

不要弄乱你的循环器 循环器和发电机

首先,当您写作时的循环程序协议

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

为我的列表获取一个代号 : 调用 exer( mylist) - > 这返回一个具有下一个( ) 方法( 或 __ next__ () () 在 Python 3 中) 的对象 [这是大多数人忘记告诉你 使用传动器环绕项目的步骤 : 继续调用从第 1 步返回的代名器上的下一个( ) 方法 。 下一个( ) 的返回值被指定给 x , 循环体被执行 。 如果从下一个( ) 中提出例外 停止 , 这意味着在循环器中没有更多的值, 循环被退出 。

真相是 Python 执行上述两个步骤, 每当它想绕过对象的内容时, 都会执行上述两个步骤 - 所以它可以是环绕, 但它也可以像其它列表一样是代码 。 extendend( mylist) ( 其中其他列表是 Python 列表 ) 。

这里的我的列表是可替换的, 因为它执行的是循环协议 。 在用户定义的类别中, 您可以使用 ` iter__ () 方法使分类的循环性实例可以被使用。 此方法应该返回一个循环器。 循环器是一个带有下一个( ) 方法的对象。 在同一类中可以同时执行 _ iter__ () 和 下一个( ) , 并有 _ iter__ () 返回自我 。 这将对简单案例有效, 但当您想要两个循环器同时绕过同一个对象时则不行 。

这就是传动程序,许多物体执行这个程序:

内置列表、 词典、 图普尔、 集和文件。 执行 ` iter__ () 的用户定义的分类 。 发电机 。

注意“ 循环” 并不知道它所处理的物体是什么类型 - 它只是遵循了循环程序, 并且乐意在下一个( ) 调用时按项目逐项获得项目 。 内建列表逐项返回项目, 字典逐项返回关键词, 文件逐行返回行等 。 而发电机则返回... 也就是产出来源所在 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

而不是输出语句, 如果您在 f123 () 中有三个返回语句, 只有第一个将被执行, 而函数会退出 。 但是 f123 () 并不是普通函数 。 当调用 f123 () 时, 它不会返回产值语句中的任何值 。 它返回一个生成对象 。 另外, 该函数并不真正退出 - 它会进入一个中止状态 。 当循环尝试在生成对象上循环时, 函数会从先前返回的产值之后的下一行的中止状态恢复到下一行的状态, 执行下一行代码, 在此情况下, 产生语句, 并返回为下一个项目 。 这一直发生到函数退出, 此时, 生成器将启动暂停, 以及循环退出 。

因此,生成器对象有点像一个适配器 — — 在一端,它展示了迭代程序, 暴露了 `iter___ () 和下一个 () 方法来保持循环的快乐。 但是,在另一端, 它运行着功能, 足以将下一个值调出, 并把它放回中止模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但执行相同的逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 比如, 如果您有无限环, 或者当您有非常长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类别“ 某些东西 ” , 将国家保留在成员中, 并在下一个( ) ( 或 Python 3 ) 方法中执行下一个逻辑步骤 。 根据逻辑, 下一个( ) 方法中的代码可能最终会查找非常复杂和易被错误的代码 。 在这里, 生成器可以提供一个简单明了的解决方案 。

- 功能 - 返回。

发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。

names = ['Sam', 'Sarah', 'Thomas', 'James']


# Using function
def greet(name) :
    return f'Hi, my name is {name}.'
    
for each_name in names:
    print(greet(each_name))

# Output:   
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.


# using generator
def greetings(names) :
    for each_name in names:
        yield f'Hi, my name is {each_name}.'
 
for greet_name in greetings(names):
    print (greet_name)

# Output:    
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.

发电机看起来像一个函数,但行为举止却像一个迭代器。

发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。

def function():
    yield 1 # return this first
    yield 2 # start continue from here (yield don't execute above code once executed)
    yield 3 # give this at last (yield don't execute above code once executed)

for processed_data in function(): 
    print(processed_data)
    
#Output:

>>>1
>>>2
>>>3

注:放弃不应在尝试中.最终建造。

也可以将数据发送回生成器!

事实上,正如这里许多答案所解释的那样,利用产量产生一个发电机。

您可以使用产出关键字将数据发送回“实时”生成器。

示例:

假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。

def translator():
    # load all the words in English language and the translation to 'other lang'
    my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}

    while True:
        word = (yield)
        yield my_words_dict.get(word, 'Unknown word...')

运行中 :

my_words_translator = translator()

next(my_words_translator)
print(my_words_translator.send('dog'))

next(my_words_translator)
print(my_words_translator.send('cat'))

将打印 :

dog in other language
Unknown word...

概括如下:

使用发件人内部发送方法将数据发送回发件人。要允许,使用 a (ield) 。

总之,产出语句将您的函数转换成一个工厂,该工厂生产一个特殊对象,称为发电机,围绕您原始函数的正文包绕。当生成器被迭代时,它将执行您的函数,直到达到下一个输出时,然后中止执行,然后对传递到的数值进行评估。它重复了每次迭代的这一过程,直到执行路径退出函数。例如,

def simple_generator():
    yield 'one'
    yield 'two'
    yield 'three'

for i in simple_generator():
    print i

简单产出

one
two
three

电源来自使用循环计算序列的生成器, 生成器执行循环每次停止到“ ield ” 的下一个计算结果, 这样它就可以计算飞行上的列表, 好处是存储到特别大的计算中的内存

说你想创建一个自己的范围函数, 产生一个可循环的数字范围, 你可以这样做,

def myRangeNaive(i):
    n = 0
    range = []
    while n < i:
        range.append(n)
        n = n + 1
    return range

并像这样使用它;

for i in myRangeNaive(10):
    print i

但这效率低,因为

您创建了一个只使用一次的数组( 此废物内存) 。 此代码实际上会两次循环到该数组上 ! : () : ()

幸好吉多和他的团队 慷慨地开发了发电机 这样我们就可以这么做了

def myRangeSmart(i):
    n = 0
    while n < i:
       yield n
       n = n + 1
    return

for i in myRangeSmart(10):
    print i

在每次迭代中, 调用下一个发电机的函数执行该函数, 直至它到达“ ield” 语句停止和“ ields” 值, 或到达函数的终点。 在第一次调用的情况下, 下一个( ) 执行到产出语句, 并产生“ n ” , 下次调用它将执行递增语句, 跳回“ 此时” , 评估它, 如果是, 它会停止并再次产生“ n ” , 它会一直持续到状态返回错误, 发电机跳到函数结束的时候 。