Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

要了解什么是产量,你必须了解什么是发电机。在你能够理解发电机之前,你必须了解易燃的发电机。

易变性

创建列表时,您可以逐项阅读其项目。逐项阅读其项目被称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

My list 是可替换的。 当您使用列表理解时, 您会创建一个列表, 因而是一个可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4

你可以使用的一切"... 在..."是一个可循环的; 列表,字符串,文件...

这些可替换的功能是实用的,因为您可以随心所欲地阅读,但您将所有值都存储在记忆中,当您拥有很多值时,这并不总是你想要的。

发电机发电机

发电机是迭代器, 一种可迭代的循环, 您只能循环一次 。 发电机不会存储记忆中的所有值, 它们会在苍蝇上生成值 :

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

除了使用()而不是使用()之外,它是一样的。但是,由于发电机只能使用一次,所以不能在我的生成器中为我第二次执行,因为发电机只能使用一次:它们计算0,然后忘记它,然后计算1,然后结束计算4,一个一个一个地计算。

产量d

函数将返回一个生成器。

>>> def create_generator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = create_generator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
<generator object create_generator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4

这是一个毫无用处的例子, 但当你知道你的功能会返回 一大堆的值时, 它就方便了, 你只需要读一次。

要掌握输出能力, 您必须明白当您调用函数时, 您在函数体中写入的代码没有运行。 函数只返回生成对象, 这有点棘手 。

然后,你的代码会继续 从它离开的每一次 使用发电机。

现在,硬的部分:

第一次调用您函数所创建的生成器对象时, 它会运行您函数的代码, 从开始到它产生, 然后返回循环的第一个值。 然后, 以后每次调用都会运行您在函数中写入的循环的再次迭代, 然后返回下一个值。 这将一直持续到生成器被认为是空的, 当函数运行时不会打出收益。 这可能是因为循环结束, 或者因为您不再满足“ if/ else ” 。


您的代码解释

发电机:

# Here you create the method of the node object that will return the generator
def _get_child_candidates(self, distance, min_dist, max_dist):

    # Here is the code that will be called each time you use the generator object:

    # If there is still a child of the node object on its left
    # AND if the distance is ok, return the next child
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild

    # If there is still a child of the node object on its right
    # AND if the distance is ok, return the next child
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild

    # If the function arrives here, the generator will be considered empty
    # there are no more than two values: the left and the right children

调用者 :

# Create an empty list and a list with the current object reference
result, candidates = list(), [self]

# Loop on candidates (they contain only one element at the beginning)
while candidates:

    # Get the last candidate and remove it from the list
    node = candidates.pop()

    # Get the distance between obj and the candidate
    distance = node._get_dist(obj)

    # If the distance is ok, then you can fill in the result
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)

    # Add the children of the candidate to the candidate's list
    # so the loop will keep running until it has looked
    # at all the children of the children of the children, etc. of the candidate
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))

return result

本代码包含几个智能部分 :

在列表中循环迭代, 但列表会随着循环迭代而扩展。 这是一个简单的方式来查看所有这些嵌套的数据, 即使它是一个有点危险的, 因为您可以以无限环结束。 在此情况下, 候选人 。 extendend( rode._ get_ child_ camedates( root, min_ dist, max_ distist)) 将耗尽所有生成器的值, 但同时继续创建新生成的生成对象, 这些对象将产生与先前的相异的值, 因为它不会被应用到同一个节点上 。 扩展 () 方法是一种列表对象方法, 期待一个可重复的列表对象方法, 并将其添加到列表中 。

通常,我们向它传递一份清单:

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]

但在你的代码中,它有一个发电机, 这是很好的,因为:

你不需要两次阅读这些值。 你可能有很多孩子, 你不想把他们都保存在记忆中。

之所以有效,是因为 Python 并不在意一种方法的论据是否是一个列表。 Python 期望它能用字符串、列表、图普勒和生成器来操作。 这叫做鸭字打字, 也是Python之所以如此酷的原因之一。 但是这是另一个故事, 另一个问题...

您可以在这里停下来,或者读一下,看一个生成器的先进使用:

控制发电机耗竭

>>> class Bank(): # Let's create a bank, building ATMs
...    crisis = False
...    def create_atm(self):
...        while not self.crisis:
...            yield "$100"
>>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
$100
>>> print(corner_street_atm.next())
$100
>>> print([corner_street_atm.next() for cash in range(5)])
['$100', '$100', '$100', '$100', '$100']
>>> hsbc.crisis = True # Crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
...    print cash
$100
$100
$100
$100
$100
$100
$100
$100
$100
...

注: Python 3, 使用打印( corner_street_atm._next___ ()) 或打印( ext( corner_ street_ atm) )

它可以对控制获取资源等各种事情有用。

义大便,你最好的朋友

Itertool 模块包含操作可替换文件的特殊功能 。 是否想要复制一个生成器? 连锁二生成器? 组值在单行的嵌套列表中? 地图/ Zip 不创建另一个列表 ?

然后就进口它的工具。

举个例子,让我们看看四匹马赛的到货订单

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
 (1, 2, 4, 3),
 (1, 3, 2, 4),
 (1, 3, 4, 2),
 (1, 4, 2, 3),
 (1, 4, 3, 2),
 (2, 1, 3, 4),
 (2, 1, 4, 3),
 (2, 3, 1, 4),
 (2, 3, 4, 1),
 (2, 4, 1, 3),
 (2, 4, 3, 1),
 (3, 1, 2, 4),
 (3, 1, 4, 2),
 (3, 2, 1, 4),
 (3, 2, 4, 1),
 (3, 4, 1, 2),
 (3, 4, 2, 1),
 (4, 1, 2, 3),
 (4, 1, 3, 2),
 (4, 2, 1, 3),
 (4, 2, 3, 1),
 (4, 3, 1, 2),
 (4, 3, 2, 1)]

了解迭代的内部机制

迭代是一个过程, 意味着可迭代( 实施 _ etre_ () 方法) 和迭代( 实施 ext_ () 方法) 。 迭代是您可以从中获取迭代器的任何对象。 迭代器是允许您循环到可迭代的物体 。

本文中有更多关于环环如何运作的论述。

其他回答

通常情况下, 它会用来创建一个不起作用的代名词。 将“ ield” 当作您函数的附加件, 以及您作为数组的函数。 如果符合某些标准, 您可以在函数中添加此值, 使之成为代名词 。

arr=[]
if 2>0:
   arr.append(2)

def func():
   if 2>0:
      yield 2

两者的输出结果相同。

使用产量的主要优势是创建迭代器。 迭代器在即时计算时不会计算每个项目的价值。 它们只在您要求时才计算。 这被称为懒惰评价 。

以下是一个简单的例子:

def isPrimeNumber(n):
    print "isPrimeNumber({}) call".format(n)
    if n==1:
        return False
    for x in range(2,n):
        if n % x == 0:
            return False
    return True

def primes (n=1):
    while(True):
        print "loop step ---------------- {}".format(n)
        if isPrimeNumber(n): yield n
        n += 1

for n in primes():
    if n> 10:break
    print "wiriting result {}".format(n)

产出:

loop step ---------------- 1
isPrimeNumber(1) call
loop step ---------------- 2
isPrimeNumber(2) call
loop step ---------------- 3
isPrimeNumber(3) call
wiriting result 3
loop step ---------------- 4
isPrimeNumber(4) call
loop step ---------------- 5
isPrimeNumber(5) call
wiriting result 5
loop step ---------------- 6
isPrimeNumber(6) call
loop step ---------------- 7
isPrimeNumber(7) call
wiriting result 7
loop step ---------------- 8
isPrimeNumber(8) call
loop step ---------------- 9
isPrimeNumber(9) call
loop step ---------------- 10
isPrimeNumber(10) call
loop step ---------------- 11
isPrimeNumber(11) call

我不是Python开发者,但对我来说,它似乎保持了程序流程的位置,而下一个循环则从“当量”的位置开始。 它似乎正在等待着这个位置,就在那个位置之前,它正在向外回报一个价值,而下一次将继续工作。

这似乎是一个有趣和好的能力:

发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。

import time

def get_gen():
    for i in range(10):
        yield i
        time.sleep(1)

def get_list():
    ret = []
    for i in range(10):
        ret.append(i)
        time.sleep(1)
    return ret


start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()

start_time = time.time()
print('get_list iteration (results come all at once)') 
for i in get_list():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')

get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds

get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds

对于那些更喜欢最低限度工作实例的人来说,考虑一下这次交互式的Python会议:

>>> def f():
...   yield 1
...   yield 2
...   yield 3
... 
>>> g = f()
>>> for i in g:
...   print(i)
... 
1
2
3
>>> for i in g:
...   print(i)
... 
>>> # Note that this time nothing was printed

在 Python 生成器( 一种特殊的迭代器) 中, 生成一系列的值, 产出关键字与 发电机功能的返回关键字相似 。

另一个令人着迷的是 生成关键词的方法 是保存生成功能的状态。

因此,我们可以设定一个数字 以不同的数值 每一次发电机产生时。

以下是一个例子:

def getPrimes(number):
    while True:
        if isPrime(number):
            number = yield number     # a miracle occurs here
        number += 1

def printSuccessivePrimes(iterations, base=10):
    primeGenerator = getPrimes(base)
    primeGenerator.send(None)
    for power in range(iterations):
        print(primeGenerator.send(base ** power))