Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

收益率与返回率相似。区别是:

函数输出使函数可循环( 在以下示例中, 质数( n= 1) 函数成为可循环的 )。 它基本上意味着下次调用函数时, 它会从它离开的地方( 以产出表达式的线为后方) 继续 。

def isprime(n):
    if n == 1:
        return False
    for x in range(2, n):
        if n % x == 0:
            return False
    else:
        return True

def primes(n = 1):
   while(True):
       if isprime(n): yield n
       n += 1 

for n in primes():
    if n > 100: break
    print(n)

在上述例子中, 如果是inprime( n) 是真实的, 它会返回质号。 在下一个迭代中, 它会从下一行继续

n += 1  

其他回答

理解产出的快捷键

当您看到带产出语句的函数时,应用这个简单易懂的把戏来理解会发生什么:

在函数开始处插入行结果 = []。 以结果替换每个输出。 附录( 扩展) 。 在函数底部插入一行返回结果 。 耶 - 不再生成语句! 读取并解析代码。 将函数与原始定义比较 。

这个骗局也许能让你了解函数背后的逻辑, 但实际的收益率与列表法中发生的情况大不相同。 在许多情况下, 收益率法会提高记忆效率和速度。 在其他情况下, 这个骗局会让你陷入一个无限的循环, 即使最初的功能运作良好。 阅读以学习更多...

不要弄乱你的循环器 循环器和发电机

首先,当您写作时的循环程序协议

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

为我的列表获取一个代号 : 调用 exer( mylist) - > 这返回一个具有下一个( ) 方法( 或 __ next__ () () 在 Python 3 中) 的对象 [这是大多数人忘记告诉你 使用传动器环绕项目的步骤 : 继续调用从第 1 步返回的代名器上的下一个( ) 方法 。 下一个( ) 的返回值被指定给 x , 循环体被执行 。 如果从下一个( ) 中提出例外 停止 , 这意味着在循环器中没有更多的值, 循环被退出 。

真相是 Python 执行上述两个步骤, 每当它想绕过对象的内容时, 都会执行上述两个步骤 - 所以它可以是环绕, 但它也可以像其它列表一样是代码 。 extendend( mylist) ( 其中其他列表是 Python 列表 ) 。

这里的我的列表是可替换的, 因为它执行的是循环协议 。 在用户定义的类别中, 您可以使用 ` iter__ () 方法使分类的循环性实例可以被使用。 此方法应该返回一个循环器。 循环器是一个带有下一个( ) 方法的对象。 在同一类中可以同时执行 _ iter__ () 和 下一个( ) , 并有 _ iter__ () 返回自我 。 这将对简单案例有效, 但当您想要两个循环器同时绕过同一个对象时则不行 。

这就是传动程序,许多物体执行这个程序:

内置列表、 词典、 图普尔、 集和文件。 执行 ` iter__ () 的用户定义的分类 。 发电机 。

注意“ 循环” 并不知道它所处理的物体是什么类型 - 它只是遵循了循环程序, 并且乐意在下一个( ) 调用时按项目逐项获得项目 。 内建列表逐项返回项目, 字典逐项返回关键词, 文件逐行返回行等 。 而发电机则返回... 也就是产出来源所在 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

而不是输出语句, 如果您在 f123 () 中有三个返回语句, 只有第一个将被执行, 而函数会退出 。 但是 f123 () 并不是普通函数 。 当调用 f123 () 时, 它不会返回产值语句中的任何值 。 它返回一个生成对象 。 另外, 该函数并不真正退出 - 它会进入一个中止状态 。 当循环尝试在生成对象上循环时, 函数会从先前返回的产值之后的下一行的中止状态恢复到下一行的状态, 执行下一行代码, 在此情况下, 产生语句, 并返回为下一个项目 。 这一直发生到函数退出, 此时, 生成器将启动暂停, 以及循环退出 。

因此,生成器对象有点像一个适配器 — — 在一端,它展示了迭代程序, 暴露了 `iter___ () 和下一个 () 方法来保持循环的快乐。 但是,在另一端, 它运行着功能, 足以将下一个值调出, 并把它放回中止模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但执行相同的逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 比如, 如果您有无限环, 或者当您有非常长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类别“ 某些东西 ” , 将国家保留在成员中, 并在下一个( ) ( 或 Python 3 ) 方法中执行下一个逻辑步骤 。 根据逻辑, 下一个( ) 方法中的代码可能最终会查找非常复杂和易被错误的代码 。 在这里, 生成器可以提供一个简单明了的解决方案 。

这是关于产量的心理形象。

我想把一条线视为有堆叠(即使它不是用这种方式执行的)。

当调用一个普通函数时, 它会将其本地变量放入堆栈, 进行一些计算, 然后清除堆栈和返回。 其本地变量的值再也不会被看到 。

当它的代码开始运行时( 即函数被调用后, 返回一个生成对象, 其下一个( ) 方法随后被引用) , 它同样将其本地变量放在堆叠上, 并进行一段时间的计算 。 但是, 当它点击收益语句时, 在清理堆叠中的一部分并返回之前, 它会对其本地变量进行截图, 并将其存储在生成对象中 。 它还写下它目前位于代码中的位置( 即特定收益语句 ) 。

所以这是一种冷冻功能 发电机挂在了上面

当下一个 () 后被调用时, 它会从堆栈上取回函数的物品, 并重新激活它。 函数继续从剩余部分进行计算, 无视它刚刚在冷藏室里度过了一个永恒的时间 。

比较以下实例:

def normalFunction():
    return
    if False:
        pass

def yielderFunction():
    return
    if False:
        yield 12

当我们称第二个函数为第二个函数时, 它的行为与第一个函数非常不同。 收益声明可能无法达到, 但是如果它存在任何地方, 它会改变我们正在处理的东西的性质 。

>>> yielderFunction()
<generator object yielderFunction at 0x07742D28>

调用 powerFunction () 不运行它的代码, 而是让一个生成器出自代码 。 (也许用 powerFunction () 的前缀命名这种东西作为可读性是一个好主意 。)

>>> gen = yielderFunction()
>>> dir(gen)
['__class__',
 ...
 '__iter__',    #Returns gen itself, to make it work uniformly with containers
 ...            #when given to a for loop. (Containers return an iterator instead.)
 'close',
 'gi_code',
 'gi_frame',
 'gi_running',
 'next',        #The method that runs the function's body.
 'send',
 'throw']

gi_ code 和 gi_ frame 字段是存放冻结状态的地方。 使用 dir (.) 来探索它们, 我们可以确认上面的心理模型是可信的 。

产出 :

可以通过停止函数从函数返回一个值的多次。 您可以从它中返回一个值, 如从中产生 。 当返回大数据时, 将它分成小部分数据, 以防止大量使用内存 。

例如,下面的测试 () 可以通过停止测试( ) 逐个返回“ 1 ” 、 “ 2 ” 和 [ “ 3 ” 、 “ 四 ” 。 因此, 测试( ) 总共返回3倍, 总共返回3倍, 停止测试( ) 共返回3倍 :

def test():
    yield 'One'                  # Stop, return 'One' and resume 
    yield 'Two'                  # Stop, return 'Two' and resume
    yield from ['Three', 'Four'] # Stop and return ['Three', 'Four'] 

下面这三套代码可以调用测试() 并打印“ 1 ” 、 “ 2 ” 、 “ 三 ” 和 “ 四 ” :

for x in test():
    print(x)
x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
x = test()
print(x.__next__())
print(x.__next__())
print(x.__next__())
print(x.__next__())

其结果是:

$ python yield_test.py
One
Two
Three
Four

此外,在利用回报和产出时,没有办法从回报中获得价值:

def test():
    yield 'One' 
    yield 'Two'
    yield from ['Three', 'Four']
    return 'Five' # 'Five' cannot be got

x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
print(next(x)) # Here

因此,在试图获取“ 五” 时, 下面有一个错误 :

$ python yield_test.py 
One
Two
Three
Four
Traceback (most recent call last):
  File "C:\Users\kai\yield_test.py", line 12, in <module>
    print(next(x))
          ^^^^^^^
StopIteration: Five

输出允许您通过将循环部分乘以一个便于再利用的单独方法来写出更聪明的编剧。

假设你需要环绕电子表格的所有非空白行,对每行都做一些事情。

for i, row in df.iterrows(): #from the panda package for reading excel 
  if row = blank: # pseudo code, check if row is non-blank...
    continue
  if past_last_row: # pseudo code, check for end of input data
    break
  #### above is boring stuff, below is what we actually want to do with the data ###
  f(row)

如果您在类似循环中需要调用 g( row) , 您可能会发现自己重复了对数, 并重复了对数的检查, 有效行的检查是无聊、 复杂和容易出错的。 我们不想重复( DRY 原则 ) 。

您想要将检查每个记录的代码与实际处理行的代码区分开来, 例如 f( row) 和 g( row) 。

您可以设定一个函数, 将 f () 作为输入参数, 但是在一种方法中使用收益率要简单得多, 这种方法可以做所有关于检查有效行的无聊事情, 准备拨打 f () :

def valid_rows():
  for i, row in df.iterrows(): # iterate over each row of spreadsheet
    if row == blank: # pseudo code, check if row is non-blank...
      continue
    if past_last_row: # pseudo code, check for end of input data
      break
    yield i, row

请注意,该方法的每次调用都会返回下一行, 但如果所有行都读取, 并用于结束部分, 方法会正常返回。 下一次调用将开始新的循环 。

现在您可以在数据上写入迭代, 而不必重复对有效行进行无趣的检查( 现在根据自己的方法来计算) , 例如 :

for i, row in valid_rows():
  f(row)

for i, row in valid_rows():
  g(row)

nr_valid_rows = len(list(valid_rows()))

仅此而已。 请注意, 我还没有使用诸如 迭代器、 生成器、 协议、 共同常规等术语 。 我认为这个简单的例子 适用于我们日常的许多编码 。

虽然很多答案都表明你为什么用一个产量来创建发电机, 但对于产量来说却有更多的用途。 做一个共同的习惯很容易, 这样可以让信息在两个代码区块之间传递。 我不再重复任何已经给出的关于使用产量来创建发电机的好例子 。

为了帮助理解下一个代码中的产值, 您可以用手指通过任何有产值的代码来追踪循环。 每次你的手指碰到产量的代码时, 您必须等待下一个或发送输入。 调用下一个代码时, 您可以跟踪代码, 直到你到达产量... 产值右侧的代码被评估并返回到调用者... 然后您等待。 当调用下一个代码时, 您会通过代码执行另一个循环。 但是, 您会注意到, 产值也可以用一个发送方式来使用。 发送时, 将会将一个调用器的值发送到产值中 。 如果发送了, 则会收到发送的值, 然后将其从左侧吐出... , 然后通过代码的跟踪直到您再次到达产量( 返回最后的值, 如下一个调用 ) 。

例如:

>>> def coroutine():
...     i = -1
...     while True:
...         i += 1
...         val = (yield i)
...         print("Received %s" % val)
...
>>> sequence = coroutine()
>>> sequence.next()
0
>>> sequence.next()
Received None
1
>>> sequence.send('hello')
Received hello
2
>>> sequence.close()