Python 中产出关键字的用法是什么? 它能做什么?
例如,我试图理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。
也可以将数据发送回生成器!
事实上,正如这里许多答案所解释的那样,利用产量产生一个发电机。
您可以使用产出关键字将数据发送回“实时”生成器。
示例:
假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。
def translator():
# load all the words in English language and the translation to 'other lang'
my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}
while True:
word = (yield)
yield my_words_dict.get(word, 'Unknown word...')
运行中 :
my_words_translator = translator()
next(my_words_translator)
print(my_words_translator.send('dog'))
next(my_words_translator)
print(my_words_translator.send('cat'))
将打印 :
dog in other language
Unknown word...
概括如下:
使用发件人内部发送方法将数据发送回发件人。要允许,使用 a (ield) 。
发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。
import time
def get_gen():
for i in range(10):
yield i
time.sleep(1)
def get_list():
ret = []
for i in range(10):
ret.append(i)
time.sleep(1)
return ret
start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()
start_time = time.time()
print('get_list iteration (results come all at once)')
for i in get_list():
print(f'result arrived after: {time.time() - start_time:.0f} seconds')
get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds
get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。
我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:
我打电话给你并告诉你,我想要一个以特定方式计算的数字序列,我告诉你算法是什么。 这个步骤对应着定义发电机的函数, 也就是包含一个产出的函数。 稍后我告诉你, “ 好, 准备好告诉我数字的序列 ” 。 这个步骤对应着调用发电机的函数, 返回一个发电机对象。 注意不要告诉我任何数字; 你只是拿起你的纸张和铅笔。 我问你, “ 请告诉我下一个数字 ” , 然后你告诉我第一个数字; 之后, 你等着我问你下一个数字。 这是你的任务, 也就是确定你所在的位置, 你已经说过的数字, 下一个数字是什么。 我不在乎细节。 这个步骤相当于在发电机对象上调用下一个( 发电机) 号码的方法。 ( Python 2, next) 注意, 这是一个发电机对象的方法; 在 Python 3, 它被命名为...
这是生成器所做的( 包含一个产值的函数 ) ; 它开始在第一个( ) 上执行, 当它做一个产值时暂停, 当要求下一个( ) 值时, 它会从最后一点继续 。 它的设计完全符合 Python 的循环协议, 协议描述如何按顺序要求值 。
迭代协议最著名的用户是 Python 的命令用户。 所以, 当你做 :
for item in sequence:
序列是否是一个列表、字符串、字典或上述生成对象并不重要;结果是一样的:您逐个阅读序列中的项目。
请注意,定义含有产出关键字的函数不是创建生成器的唯一方法;它只是创建生成器的最简单的方法。
欲知更准确的信息,请阅读Python文件中的迭代机类型、产量说明和发电机。
许多人使用回报而不是生产,但在某些情况下,收益可以更有效和更便于工作。
这里的例子绝对是收成最佳的:
返回( 在函数)
import random
def return_dates():
dates = [] # With 'return' you need to create a list then return it
for i in range(5):
date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
dates.append(date)
return dates
产出(在函数)
def yield_dates():
for i in range(5):
date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
yield date # 'yield' makes a generator automatically which works
# in a similar way. This is much more efficient.
呼叫功能
dates_list = return_dates()
print(dates_list)
for i in dates_list:
print(i)
dates_generator = yield_dates()
print(dates_generator)
for i in dates_generator:
print(i)
两种函数都做同样的事情, 但产量使用三行而不是五行, 并且有一个更少的变量要担心。
这是代码的结果:
调
您可以看到两个函数都做相同的事情。 唯一的区别是 返回_ dates () 给出了列表, 而 收益_ dates () 给出了生成器 。
真实生活中的范例就是 逐行读取文件行 或者你只是想制造一个发电机
以下是一个简单的例子:
def isPrimeNumber(n):
print "isPrimeNumber({}) call".format(n)
if n==1:
return False
for x in range(2,n):
if n % x == 0:
return False
return True
def primes (n=1):
while(True):
print "loop step ---------------- {}".format(n)
if isPrimeNumber(n): yield n
n += 1
for n in primes():
if n> 10:break
print "wiriting result {}".format(n)
产出:
loop step ---------------- 1
isPrimeNumber(1) call
loop step ---------------- 2
isPrimeNumber(2) call
loop step ---------------- 3
isPrimeNumber(3) call
wiriting result 3
loop step ---------------- 4
isPrimeNumber(4) call
loop step ---------------- 5
isPrimeNumber(5) call
wiriting result 5
loop step ---------------- 6
isPrimeNumber(6) call
loop step ---------------- 7
isPrimeNumber(7) call
wiriting result 7
loop step ---------------- 8
isPrimeNumber(8) call
loop step ---------------- 9
isPrimeNumber(9) call
loop step ---------------- 10
isPrimeNumber(10) call
loop step ---------------- 11
isPrimeNumber(11) call
我不是Python开发者,但对我来说,它似乎保持了程序流程的位置,而下一个循环则从“当量”的位置开始。 它似乎正在等待着这个位置,就在那个位置之前,它正在向外回报一个价值,而下一次将继续工作。
这似乎是一个有趣和好的能力:
简单使用实例 :
>>> def foo():
yield 100
yield 20
yield 3
>>> for i in foo(): print(i)
100
20
3
>>>
如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。
在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。
在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。