Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

要理解它的产值函数,人们必须理解发电机是什么。此外,在理解发电机之前,你必须理解易用的东西。易用 : 易用 : 要创建列表, 您自然需要能够逐个读取每个元素。 逐项读取其项目的过程被称为迭代 :

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3 

My list 是可替换的。 当您使用列表理解值时, 您会创建一个列表, 因此该列表是可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4 

所有可用于... 的数据结构都是可循环的; 列表、 字符串、 文件...

这些惯用方法很方便,因为您可以随意阅读,但您可以将所有值存储在记忆中,当您有许多值时,这些值并不总是可取的。 生成器: 生成器 A 也是一种迭代器, 一种特殊的迭代器, 只能迭代一次。 生成器不会将所有值存储在记忆中, 而是在苍蝇上生成值 :

发电机:发电机、发电机、发电机发电,但不储存能源;)

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4 

只要使用 () 而不是 [] , 列表理解就会变成发电机理解。 但是, 由于发电机只能使用一次, 您无法在我的生成器中执行 i 第二次 : 生成器计算 0, 然后丢弃它, 然后计算 1, 最后一次计算 4 。 典型的黑色盲人打破玉米 。

产出关键字的使用方式与返回相同,但函数返回生成器。

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() 
>>> print(mygenerator) 
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4 

这个例子本身是毫无用处的,但是当您需要函数返回大量数值,而只需要读一次,使用产量就方便了。

要掌握收益率,需要清楚的是,当函数被调用时,函数正文中写入的代码将不会运行。函数只返回生成对象。启动者可能会对此感到困惑。

第二,明白代码会从每次使用发电机时留下的代码中继续使用。

现在最困难的部分是:

第一次调用您函数所创建的生成器对象时, 它会运行函数中的代码, 从开始一直运行到产生, 然后返回循环的第一个值。 然后, 以后的每次调用都会运行您在函数中写入的循环的下一个迭代, 并返回下一个值。 这将一直持续到生成器被视为空, 当函数运行时没有被击中时该生成。 这可能是因为循环已经结束, 或者因为您不再满足于“ if/ else ” 。

个人理解 我希望帮助你!

其他回答

也可以将数据发送回生成器!

事实上,正如这里许多答案所解释的那样,利用产量产生一个发电机。

您可以使用产出关键字将数据发送回“实时”生成器。

示例:

假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。

def translator():
    # load all the words in English language and the translation to 'other lang'
    my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}

    while True:
        word = (yield)
        yield my_words_dict.get(word, 'Unknown word...')

运行中 :

my_words_translator = translator()

next(my_words_translator)
print(my_words_translator.send('dog'))

next(my_words_translator)
print(my_words_translator.send('cat'))

将打印 :

dog in other language
Unknown word...

概括如下:

使用发件人内部发送方法将数据发送回发件人。要允许,使用 a (ield) 。

佩顿有什么差错?

Python 中的 Yield 关键字类似于用于返回 Python 中的值或对象的返回语句。 但是, 存在微小的差别。 收益语句返回一个生成符, 而不是简单地返回一个值, 而返回一个函数的生成符。

在程序内,当您调用一个函数,该函数有一个输出语句时,一旦遇到一个输出,函数的执行即停止,然后将生成器的一个对象返回到函数调用器。用更简单的文字,产出关键字将把一个与该关键字一起指定的表达式转换为生成器对象,然后返回到调用器。因此,如果您想要获得在生成器对象内存储的值,则需要将该关键字复制到该对象上。

它不会破坏本地变量的状态。 当调用函数时, 执行将从最后一个输出表达式开始。 请注意, 包含输出关键字的函数被称为生成函数 。

当您使用含有返回值的函数时,每次调用函数时,该函数从一组新的变量开始。反之,如果使用一个生成函数而不是正常函数,则执行将从它左最后的位置开始。

如果您想要从函数中返回多个值, 您可以使用输出关键字来使用生成函数。 输出表达式返回多个值。 它们返回一个值, 然后等待, 保存本地状态, 然后再恢复 。

资料来源:https://www.simplilearn.com/tutorics/python-tutoric/yield-in-python。

理解产出的快捷键

当您看到带产出语句的函数时,应用这个简单易懂的把戏来理解会发生什么:

在函数开始处插入行结果 = []。 以结果替换每个输出。 附录( 扩展) 。 在函数底部插入一行返回结果 。 耶 - 不再生成语句! 读取并解析代码。 将函数与原始定义比较 。

这个骗局也许能让你了解函数背后的逻辑, 但实际的收益率与列表法中发生的情况大不相同。 在许多情况下, 收益率法会提高记忆效率和速度。 在其他情况下, 这个骗局会让你陷入一个无限的循环, 即使最初的功能运作良好。 阅读以学习更多...

不要弄乱你的循环器 循环器和发电机

首先,当您写作时的循环程序协议

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

为我的列表获取一个代号 : 调用 exer( mylist) - > 这返回一个具有下一个( ) 方法( 或 __ next__ () () 在 Python 3 中) 的对象 [这是大多数人忘记告诉你 使用传动器环绕项目的步骤 : 继续调用从第 1 步返回的代名器上的下一个( ) 方法 。 下一个( ) 的返回值被指定给 x , 循环体被执行 。 如果从下一个( ) 中提出例外 停止 , 这意味着在循环器中没有更多的值, 循环被退出 。

真相是 Python 执行上述两个步骤, 每当它想绕过对象的内容时, 都会执行上述两个步骤 - 所以它可以是环绕, 但它也可以像其它列表一样是代码 。 extendend( mylist) ( 其中其他列表是 Python 列表 ) 。

这里的我的列表是可替换的, 因为它执行的是循环协议 。 在用户定义的类别中, 您可以使用 ` iter__ () 方法使分类的循环性实例可以被使用。 此方法应该返回一个循环器。 循环器是一个带有下一个( ) 方法的对象。 在同一类中可以同时执行 _ iter__ () 和 下一个( ) , 并有 _ iter__ () 返回自我 。 这将对简单案例有效, 但当您想要两个循环器同时绕过同一个对象时则不行 。

这就是传动程序,许多物体执行这个程序:

内置列表、 词典、 图普尔、 集和文件。 执行 ` iter__ () 的用户定义的分类 。 发电机 。

注意“ 循环” 并不知道它所处理的物体是什么类型 - 它只是遵循了循环程序, 并且乐意在下一个( ) 调用时按项目逐项获得项目 。 内建列表逐项返回项目, 字典逐项返回关键词, 文件逐行返回行等 。 而发电机则返回... 也就是产出来源所在 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

而不是输出语句, 如果您在 f123 () 中有三个返回语句, 只有第一个将被执行, 而函数会退出 。 但是 f123 () 并不是普通函数 。 当调用 f123 () 时, 它不会返回产值语句中的任何值 。 它返回一个生成对象 。 另外, 该函数并不真正退出 - 它会进入一个中止状态 。 当循环尝试在生成对象上循环时, 函数会从先前返回的产值之后的下一行的中止状态恢复到下一行的状态, 执行下一行代码, 在此情况下, 产生语句, 并返回为下一个项目 。 这一直发生到函数退出, 此时, 生成器将启动暂停, 以及循环退出 。

因此,生成器对象有点像一个适配器 — — 在一端,它展示了迭代程序, 暴露了 `iter___ () 和下一个 () 方法来保持循环的快乐。 但是,在另一端, 它运行着功能, 足以将下一个值调出, 并把它放回中止模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但执行相同的逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 比如, 如果您有无限环, 或者当您有非常长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类别“ 某些东西 ” , 将国家保留在成员中, 并在下一个( ) ( 或 Python 3 ) 方法中执行下一个逻辑步骤 。 根据逻辑, 下一个( ) 方法中的代码可能最终会查找非常复杂和易被错误的代码 。 在这里, 生成器可以提供一个简单明了的解决方案 。

要了解什么是产量,你必须了解什么是发电机。在你能够理解发电机之前,你必须了解易燃的发电机。

易变性

创建列表时,您可以逐项阅读其项目。逐项阅读其项目被称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3

My list 是可替换的。 当您使用列表理解时, 您会创建一个列表, 因而是一个可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4

你可以使用的一切"... 在..."是一个可循环的; 列表,字符串,文件...

这些可替换的功能是实用的,因为您可以随心所欲地阅读,但您将所有值都存储在记忆中,当您拥有很多值时,这并不总是你想要的。

发电机发电机

发电机是迭代器, 一种可迭代的循环, 您只能循环一次 。 发电机不会存储记忆中的所有值, 它们会在苍蝇上生成值 :

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4

除了使用()而不是使用()之外,它是一样的。但是,由于发电机只能使用一次,所以不能在我的生成器中为我第二次执行,因为发电机只能使用一次:它们计算0,然后忘记它,然后计算1,然后结束计算4,一个一个一个地计算。

产量d

函数将返回一个生成器。

>>> def create_generator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = create_generator() # create a generator
>>> print(mygenerator) # mygenerator is an object!
<generator object create_generator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4

这是一个毫无用处的例子, 但当你知道你的功能会返回 一大堆的值时, 它就方便了, 你只需要读一次。

要掌握输出能力, 您必须明白当您调用函数时, 您在函数体中写入的代码没有运行。 函数只返回生成对象, 这有点棘手 。

然后,你的代码会继续 从它离开的每一次 使用发电机。

现在,硬的部分:

第一次调用您函数所创建的生成器对象时, 它会运行您函数的代码, 从开始到它产生, 然后返回循环的第一个值。 然后, 以后每次调用都会运行您在函数中写入的循环的再次迭代, 然后返回下一个值。 这将一直持续到生成器被认为是空的, 当函数运行时不会打出收益。 这可能是因为循环结束, 或者因为您不再满足“ if/ else ” 。


您的代码解释

发电机:

# Here you create the method of the node object that will return the generator
def _get_child_candidates(self, distance, min_dist, max_dist):

    # Here is the code that will be called each time you use the generator object:

    # If there is still a child of the node object on its left
    # AND if the distance is ok, return the next child
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild

    # If there is still a child of the node object on its right
    # AND if the distance is ok, return the next child
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild

    # If the function arrives here, the generator will be considered empty
    # there are no more than two values: the left and the right children

调用者 :

# Create an empty list and a list with the current object reference
result, candidates = list(), [self]

# Loop on candidates (they contain only one element at the beginning)
while candidates:

    # Get the last candidate and remove it from the list
    node = candidates.pop()

    # Get the distance between obj and the candidate
    distance = node._get_dist(obj)

    # If the distance is ok, then you can fill in the result
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)

    # Add the children of the candidate to the candidate's list
    # so the loop will keep running until it has looked
    # at all the children of the children of the children, etc. of the candidate
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))

return result

本代码包含几个智能部分 :

在列表中循环迭代, 但列表会随着循环迭代而扩展。 这是一个简单的方式来查看所有这些嵌套的数据, 即使它是一个有点危险的, 因为您可以以无限环结束。 在此情况下, 候选人 。 extendend( rode._ get_ child_ camedates( root, min_ dist, max_ distist)) 将耗尽所有生成器的值, 但同时继续创建新生成的生成对象, 这些对象将产生与先前的相异的值, 因为它不会被应用到同一个节点上 。 扩展 () 方法是一种列表对象方法, 期待一个可重复的列表对象方法, 并将其添加到列表中 。

通常,我们向它传递一份清单:

>>> a = [1, 2]
>>> b = [3, 4]
>>> a.extend(b)
>>> print(a)
[1, 2, 3, 4]

但在你的代码中,它有一个发电机, 这是很好的,因为:

你不需要两次阅读这些值。 你可能有很多孩子, 你不想把他们都保存在记忆中。

之所以有效,是因为 Python 并不在意一种方法的论据是否是一个列表。 Python 期望它能用字符串、列表、图普勒和生成器来操作。 这叫做鸭字打字, 也是Python之所以如此酷的原因之一。 但是这是另一个故事, 另一个问题...

您可以在这里停下来,或者读一下,看一个生成器的先进使用:

控制发电机耗竭

>>> class Bank(): # Let's create a bank, building ATMs
...    crisis = False
...    def create_atm(self):
...        while not self.crisis:
...            yield "$100"
>>> hsbc = Bank() # When everything's ok the ATM gives you as much as you want
>>> corner_street_atm = hsbc.create_atm()
>>> print(corner_street_atm.next())
$100
>>> print(corner_street_atm.next())
$100
>>> print([corner_street_atm.next() for cash in range(5)])
['$100', '$100', '$100', '$100', '$100']
>>> hsbc.crisis = True # Crisis is coming, no more money!
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> wall_street_atm = hsbc.create_atm() # It's even true for new ATMs
>>> print(wall_street_atm.next())
<type 'exceptions.StopIteration'>
>>> hsbc.crisis = False # The trouble is, even post-crisis the ATM remains empty
>>> print(corner_street_atm.next())
<type 'exceptions.StopIteration'>
>>> brand_new_atm = hsbc.create_atm() # Build a new one to get back in business
>>> for cash in brand_new_atm:
...    print cash
$100
$100
$100
$100
$100
$100
$100
$100
$100
...

注: Python 3, 使用打印( corner_street_atm._next___ ()) 或打印( ext( corner_ street_ atm) )

它可以对控制获取资源等各种事情有用。

义大便,你最好的朋友

Itertool 模块包含操作可替换文件的特殊功能 。 是否想要复制一个生成器? 连锁二生成器? 组值在单行的嵌套列表中? 地图/ Zip 不创建另一个列表 ?

然后就进口它的工具。

举个例子,让我们看看四匹马赛的到货订单

>>> horses = [1, 2, 3, 4]
>>> races = itertools.permutations(horses)
>>> print(races)
<itertools.permutations object at 0xb754f1dc>
>>> print(list(itertools.permutations(horses)))
[(1, 2, 3, 4),
 (1, 2, 4, 3),
 (1, 3, 2, 4),
 (1, 3, 4, 2),
 (1, 4, 2, 3),
 (1, 4, 3, 2),
 (2, 1, 3, 4),
 (2, 1, 4, 3),
 (2, 3, 1, 4),
 (2, 3, 4, 1),
 (2, 4, 1, 3),
 (2, 4, 3, 1),
 (3, 1, 2, 4),
 (3, 1, 4, 2),
 (3, 2, 1, 4),
 (3, 2, 4, 1),
 (3, 4, 1, 2),
 (3, 4, 2, 1),
 (4, 1, 2, 3),
 (4, 1, 3, 2),
 (4, 2, 1, 3),
 (4, 2, 3, 1),
 (4, 3, 1, 2),
 (4, 3, 2, 1)]

了解迭代的内部机制

迭代是一个过程, 意味着可迭代( 实施 _ etre_ () 方法) 和迭代( 实施 ext_ () 方法) 。 迭代是您可以从中获取迭代器的任何对象。 迭代器是允许您循环到可迭代的物体 。

本文中有更多关于环环如何运作的论述。

这样想吧:

迭代器只是具有下一个( ) 方法的对象的奇特探测术语。 因此, 产生式的函数最终会变成这样 :

原文:

def some_function():
    for i in xrange(4):
        yield i

for i in some_function():
    print i

Python 翻译用上述代码所做的基本上就是:

class it:
    def __init__(self):
        # Start at -1 so that we get 0 when we add 1 below.
        self.count = -1

    # The __iter__ method will be called once by the 'for' loop.
    # The rest of the magic happens on the object returned by this method.
    # In this case it is the object itself.
    def __iter__(self):
        return self

    # The next method will be called repeatedly by the 'for' loop
    # until it raises StopIteration.
    def next(self):
        self.count += 1
        if self.count < 4:
            return self.count
        else:
            # A StopIteration exception is raised
            # to signal that the iterator is done.
            # This is caught implicitly by the 'for' loop.
            raise StopIteration

def some_func():
    return it()

for i in some_func():
    print i

为了更深入地了解幕后发生的事情,

iterator = some_func()
try:
    while 1:
        print iterator.next()
except StopIteration:
    pass

这更有意义还是更让人困惑?

我要指出,为了说明起见,这过于简单化。 )