Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

失败给了你一台发电机

def get_odd_numbers(i):
    return range(1, i, 2)
def yield_odd_numbers(i):
    for x in range(1, i, 2):
       yield x
foo = get_odd_numbers(10)
bar = yield_odd_numbers(10)
foo
[1, 3, 5, 7, 9]
bar
<generator object yield_odd_numbers at 0x1029c6f50>
bar.next()
1
bar.next()
3
bar.next()
5

正如你可以看到的那样,在第一种情况下,Foo同时持有完整的记忆列表。对于包含5个元素的清单来说,这不是什么大不了的事,但是如果你想列出500万个元素的清单,那又会怎样?这不仅仅是一个巨大的记忆食用器,在函数被调用的时候,它还要花费很多时间来构建这个功能。

在第二种情况下, 酒吧只给您一台发电机。 发电机是一个可循环的, 意思是您可以在循环中使用它, 等等, 但每个值只能存取一次。 所有值也并非同时存储在记忆中; 生成器的“ 成员” 对象, 上次您称之为“ 成员” 时, 它在循环中。 这样, 如果您使用一个可( 说) 的转号, 计数为500亿, 你不必一次数到500亿, 然后存储500亿的数值来进行计算。

再者,这是一个相当巧妙的例子,如果你真想数到500亿,你可能会使用滑板。 () :

这是发电机中最简单的使用实例。 正如您所说, 它可以用来写高效的变换, 使用产量将东西推到调用堆叠上, 而不是使用某种堆叠变量。 发电机也可以用于专门的树道, 以及各种其它方式 。

其他回答

TL; DR TR; TL; TDR

代替此:

def square_list(n):
    the_list = []                         # Replace
    for x in range(n):
        y = x * x
        the_list.append(y)                # these
    return the_list                       # lines

这样做:

def square_yield(n):
    for x in range(n):
        y = x * x
        yield y                           # with this one.

每当你发现自己从头开始编出一个清单时, 每一块都取而代之。

这是我第一次"啊哈"节奏节奏


收成是一种含糖的方式 说

构建一系列材料

相同行为 :

>>> for square in square_list(4):
...     print(square)
...
0
1
4
9
>>> for square in square_yield(4):
...     print(square)
...
0
1
4
9

不同的行为 :

产量是单行道,只能绕过一次。当一个函数有收益时,我们称它为发电机功能。循环者就是它的回报。这些术语是明亮的。我们失去了一个容器的方便,但获得一系列按需要计算并任意延长的能量。

是懒惰的, 它会推卸计算。 函数中含有收益的函数在调用时不会实际执行。 它返回一个循环器对象, 记得它留下的位置。 每次您在调用循环器时( 这发生在换环) 执行步数向下一个产数前进。 返回会提高停止输出并结束序列( 这是换圈的自然结束 ) 。

产量是多功能的。数据不必全部储存在一起, 它可以一次提供一次。 它可以是无限的 。

>>> def squares_all_of_them():
...     x = 0
...     while True:
...         yield x * x
...         x += 1
...
>>> squares = squares_all_of_them()
>>> for _ in range(4):
...     print(next(squares))
...
0
1
4
9

如果您需要多个通行证,且系列不会太长,请在电话列表上填写:

>>> list(square_yield(4))
[0, 1, 4, 9]

英明地选择“产生”一词,因为这两个含义都适用:

产量——生产或供应(如农业)

...在系列中提供下一个数据

放弃或放弃(与政治权力一样)

...在传动器推进之前,将CPU执行。

以下是一个简单的例子:

def isPrimeNumber(n):
    print "isPrimeNumber({}) call".format(n)
    if n==1:
        return False
    for x in range(2,n):
        if n % x == 0:
            return False
    return True

def primes (n=1):
    while(True):
        print "loop step ---------------- {}".format(n)
        if isPrimeNumber(n): yield n
        n += 1

for n in primes():
    if n> 10:break
    print "wiriting result {}".format(n)

产出:

loop step ---------------- 1
isPrimeNumber(1) call
loop step ---------------- 2
isPrimeNumber(2) call
loop step ---------------- 3
isPrimeNumber(3) call
wiriting result 3
loop step ---------------- 4
isPrimeNumber(4) call
loop step ---------------- 5
isPrimeNumber(5) call
wiriting result 5
loop step ---------------- 6
isPrimeNumber(6) call
loop step ---------------- 7
isPrimeNumber(7) call
wiriting result 7
loop step ---------------- 8
isPrimeNumber(8) call
loop step ---------------- 9
isPrimeNumber(9) call
loop step ---------------- 10
isPrimeNumber(10) call
loop step ---------------- 11
isPrimeNumber(11) call

我不是Python开发者,但对我来说,它似乎保持了程序流程的位置,而下一个循环则从“当量”的位置开始。 它似乎正在等待着这个位置,就在那个位置之前,它正在向外回报一个价值,而下一次将继续工作。

这似乎是一个有趣和好的能力:

所有的答案都是伟大的, 但对于新人来说有点困难。

我猜你已经得知回程声明了

作为类比,回归和收益是双胞胎。 回归意味着“ 回归和停止 ” , 而“ 回归”则意味着“回归,但继续 ” 。

尝试获得一份有回报的 num_ 列表 。

def num_list(n):
    for i in range(n):
        return i

运行它:

In [5]: num_list(3)
Out[5]: 0

你看,你只得到一个数字,而不是一个他们的名单。返回永远不允许你快乐地获胜,只要执行一次就退出。

产生结果

将返回替换为产出 :

In [10]: def num_list(n):
    ...:     for i in range(n):
    ...:         yield i
    ...:

In [11]: num_list(3)
Out[11]: <generator object num_list at 0x10327c990>

In [12]: list(num_list(3))
Out[12]: [0, 1, 2]

现在,你赢得了所有的数字。

与一次运行和停止的返回相比, 一次运行和一次运行, 一次运行和一次运行。 您可以将返回解释为一个返回, 一次返回作为全部返回。 这叫“ 易动 ” 。

再多走一步,我们就可以重新写出回报的收益声明

In [15]: def num_list(n):
    ...:     result = []
    ...:     for i in range(n):
    ...:         result.append(i)
    ...:     return result

In [16]: num_list(3)
Out[16]: [0, 1, 2]

这是关于产量的核心。

列表返回输出与目标产出的区别是:

您总是可以从列表对象中获取 [0, 1, 2] , 但只能从“ 对象输出输出” 中提取一次 。 因此, 它有一个新的名称生成对象, 如 Out[ 11] 所示 : <generator 对象 num_ list at 0x10327c990> 。

最后,作为格罗克语的比喻:

双胞胎名单和发电机是双胞胎

以下是基于收益率的简单方法, 用来计算Fibonacci系列, 解释如下:

def fib(limit=50):
    a, b = 0, 1
    for i in range(limit):
       yield b
       a, b = b, a+b

当你把这个输入你的REPL,然后尝试把它称为, 你会得到一个神秘的结果:

>>> fib()
<generator object fib at 0x7fa38394e3b8>

这是因为向 Python 发出的产出信号 表明您想要创建一个生成器, 即一个根据需求产生价值的物体。

那么,你如何生成这些值?这要么直接通过下一个使用内置函数来实现,要么间接地通过将内置函数输入一个消耗值的构造来实现。

使用下个() 内置函数, 您可以直接引用. extext/ __ extext_ , 迫使生成器产生值 :

>>> g = fib()
>>> next(g)
1
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
5

间接地,如果您为循环提供纤维、列表初始化器、图普特初始化器或其他任何期望产生/产生值的对象,您将“组装”生成器,直到它不再产生(并返回):

results = []
for i in fib(30):       # consumes fib
    results.append(i) 
# can also be accomplished with
results = list(fib(30)) # consumes fib

类似地,图普特首发器:

>>> tuple(fib(5))       # consumes fib
(1, 1, 2, 3, 5)

生成器与功能不同, 因为它很懒。 它通过保持本地状态, 并允许您在需要的时候恢复运行来达到这个目的 。

当你喊叫它的时候,

f = fib()

Python 编译函数, 遇到产出关键字, 只需返回生成对象。 似乎没有什么帮助 。

当您要求它生成第一个值时, 它会直接或间接地执行它发现的所有语句, 直到它遇到一个产量, 然后它会返回您提供的产量和暂停值。 对于一个更能证明这一点的例子, 让我们使用一些打印电话( 如果在 Python 2 上用打印“ text ” 代替 打印“ text ” ):

def yielder(value):
    """ This is an infinite generator. Only use next on it """ 
    while 1:
        print("I'm going to generate the value for you")
        print("Then I'll pause for a while")
        yield value
        print("Let's go through it again.")

现在,输入REPL:

>>> gen = yielder("Hello, yield!")

您现在有一个生成对象, 正在等待一个命令来生成一个值。 使用下一个对象并查看打印的内容 :

>>> next(gen) # runs until it finds a yield
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

未引用的结果是打印的内容。 引用的结果是从产出中返回的内容。 现在再次调用 :

>>> next(gen) # continues from yield and runs again
Let's go through it again.
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

生成器记得它被按产出值暂停, 然后从那里恢复。 下一则消息被打印, 并搜索收益声明以在它上再次暂停( 原因是同时循环 ) 。

(我下面的回答只是从使用Python发电机的角度,而不是从发电机机制的基本实施角度,后者涉及一些堆叠和堆积操纵的伎俩。 )

当在 python 函数中使用 quot 而不是返回时, 该函数将被转换为特殊的名称 。 此函数将返回生成器类型的对象 。 产量关键字是提醒 python 编译器专门处理此函数的旗帜 。 正常函数一旦从中返回某些值就会终止 。 但是, 在编译器的帮助下, 生成器的函数可以被视为可恢复 。 也就是说, 执行环境将会恢复, 执行会从上次运行时继续 。 直到您明确调回, 这会引起一个停止引力例外( 也是循环协议的一部分) , 或者到达函数的终点 。 我发现许多关于生成器的引用, 但从功能编程角度来说, 这是一种最可消化的引用 。

(现在我想谈谈产生者背后的理由, 以及基于我自己的理解的循环器。 我希望这能帮助你掌握循环器和生成者的基本动机。 这一概念以其他语言出现, 如 C# 。 )

据我所知,当我们想要处理一大批数据时,我们通常先在某处储存数据,然后逐个处理。但这种天真的方法有问题。如果数据量很大,那么事先将数据全部储存起来费用很高。因此,与其直接储存数据本身,不如间接储存某种元数据,即数据计算逻辑。

有两种方法可以包扎这类元数据。

OO 方法, 我们把元数据包成一个类。 这是执行循环协议( 即 __ next_ () 和 __ ter_ () 方法) 的所谓迭代器。 这也是常见的迭代器设计模式 。 功能方法, 我们将元数据包成函数 。 这是所谓的生成功能 。 但是在引擎盖下, 返回的生成对象仍然是 IS - A 迭代器, 因为它也执行循环程序 。

无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。