Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

失败给了你一台发电机

def get_odd_numbers(i):
    return range(1, i, 2)
def yield_odd_numbers(i):
    for x in range(1, i, 2):
       yield x
foo = get_odd_numbers(10)
bar = yield_odd_numbers(10)
foo
[1, 3, 5, 7, 9]
bar
<generator object yield_odd_numbers at 0x1029c6f50>
bar.next()
1
bar.next()
3
bar.next()
5

正如你可以看到的那样,在第一种情况下,Foo同时持有完整的记忆列表。对于包含5个元素的清单来说,这不是什么大不了的事,但是如果你想列出500万个元素的清单,那又会怎样?这不仅仅是一个巨大的记忆食用器,在函数被调用的时候,它还要花费很多时间来构建这个功能。

在第二种情况下, 酒吧只给您一台发电机。 发电机是一个可循环的, 意思是您可以在循环中使用它, 等等, 但每个值只能存取一次。 所有值也并非同时存储在记忆中; 生成器的“ 成员” 对象, 上次您称之为“ 成员” 时, 它在循环中。 这样, 如果您使用一个可( 说) 的转号, 计数为500亿, 你不必一次数到500亿, 然后存储500亿的数值来进行计算。

再者,这是一个相当巧妙的例子,如果你真想数到500亿,你可能会使用滑板。 () :

这是发电机中最简单的使用实例。 正如您所说, 它可以用来写高效的变换, 使用产量将东西推到调用堆叠上, 而不是使用某种堆叠变量。 发电机也可以用于专门的树道, 以及各种其它方式 。

其他回答

我不太熟悉Python, 但我相信它和C#的传动屏障一样, 如果你熟悉这些。

关键的想法是, 编译者/ 解释者/ 不论做什么诡计, 就打电话者而言, 他们可以继续调用下一个 () , 并且它会继续返回数值 - 仿佛生成器方法被暂停。 现在显然你无法真正“ 暂停” 一种方法, 所以编译者可以建立一个状态机器, 以便您记住您目前的位置和本地变量等的外观 。 这比自己写一个转录器容易得多 。

产出关键字简化为两个简单的事实:

如果编译者在函数内的任何地方检测到产出关键字,则该关键字函数不再通过返回语句返回。相反,它会立即返回一个称为生成器的懒惰的“待决列表”对象。“生成器”是可循环的。什么是可循环的?它像列表或设置或范围或编辑视图一样,带有按一定顺序访问每个元素的内置协议。

简言之: 最常见的情况是, 发电机是一个懒惰的、 递增的等待列表, 并且产出语句允许您使用函数符号来编程生成器应该逐渐吐出的列表值。 此外, 高级用法允许您使用发电机作为共程( 见下文 ) 。

generator = myYieldingFunction(...)  # basically a list (but lazy)
x = list(generator)  # evaluate every element into a list

   generator
       v
[x[0], ..., ???]

         generator
             v
[x[0], x[1], ..., ???]

               generator
                   v
[x[0], x[1], x[2], ..., ???]

                       StopIteration exception
[x[0], x[1], x[2]]     done

基本上, 只要遇到产出语句, 函数就会暂停并保存状态, 然后根据 Python 传动协议( 在某些合成结构中, 类似反复呼叫下一个( ) 的循环, 并捕捉一个停止作用的例外等) , 发出“ 列表中的下一个返回值 ” 。 您可能遇到过带有生成表达式的生成器; 生成函数更强大, 因为您可以将参数反馈到暂停的生成器功能中, 使用它们来实施 comutines 。 稍后会更多 。


基本示例(“清单”)

我们来定义一个函数,它就像 Python 的射程。 调用 makeRange(n) returns a Generator:

def makeRange(n):
    # return 0,1,2,...,n-1
    i = 0
    while i < n:
        yield i
        i += 1

>>> makeRange(5)
<generator object makeRange at 0x19e4aa0>

要强制生成器立即返回其未完成的值, 您可以将它传送到列表 () (就像您可以任意使用 ) :

>>> list(makeRange(5))
[0, 1, 2, 3, 4]

比较“仅返回列表”的示例

上述例子可视为仅仅是创建一份清单,并附在后面并返回:

# return a list                  #  # return a generator
def makeRange(n):                #  def makeRange(n):
    """return [0,1,2,...,n-1]""" #      """return 0,1,2,...,n-1"""
    TO_RETURN = []               # 
    i = 0                        #      i = 0
    while i < n:                 #      while i < n:
        TO_RETURN += [i]         #          yield i
        i += 1                   #          i += 1
    return TO_RETURN             # 

>>> makeRange(5)
[0, 1, 2, 3, 4]

不过,有一个重大差别;见最后一节。


您如何使用发电机

所有发电机都是易变的, 所以它们经常被这样使用:

#                  < ITERABLE >
>>> [x+10 for x in makeRange(5)]
[10, 11, 12, 13, 14]

要对发电机有更好的感觉,您可以玩过工具模块( 一定要使用链。 来自_ irightable, 而不是当必要时使用链子 ) 。 例如, 您甚至可以使用生成器来实施无限长的懒惰列表, 比如 ltertools. counts () 。 您可以执行您自己的除法列表( 可认证的) : zip( 计数 ) , 或使用一段时间内生成关键字来这样做 。

请注意: 发电机实际上可以用于更多的事情, 比如实施 comotines 或非 确定性编程或其他优雅的东西。 然而, 我在此介绍的“ 懒惰列表” 观点是您最常用的 。


幕后幕后

这就是“ Python 迭代协议” 的原理。 也就是说, 当您做列表( makeRange(5)) 时会发生什么 。 这就是我前面描述的“ 懒惰、 递增列表 ” 。

>>> x=iter(range(5))
>>> next(x)  # calls x.__next__(); x.next() is deprecated
0
>>> next(x)
1
>>> next(x)
2
>>> next(x)
3
>>> next(x)
4
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

内建函数的下一个 () 只是调用对象 ._next__ () 函数, 这是“ 电路协议” 的一部分, 并在所有迭代器中找到 。 您可以手动使用下一个( ) 函数( 和迭代协议的其他部分) 来执行奇特的东西, 通常以降低可读性为代价, 所以尽量避免这样做...


锥体

圆柱形示例:

def interactiveProcedure():
    userResponse = yield makeQuestionWebpage()
    print('user response:', userResponse)
    yield 'success'

coroutine = interactiveProcedure()
webFormData = next(coroutine)  # same as .send(None)
userResponse = serveWebForm(webFormData)

# ...at some point later on web form submit...

successStatus = coroutine.send(userResponse)

comotine (generations 通常接受通过 产出 关键字输入输入 , 例如, 下一个 Input = 产生下一个输出, 作为一种双向通信形式) 基本上是允许暂停自己和请求输入的计算( 例如它下一步应该做什么 ) 。 当 comotine 暂停自己( 当运行中的 comotine 最终会点击 产出 关键字时) , 计算会暂停, 控制会被倒回“ 调” 函数( 要求下一个计算值的框架 ) 。 暂停的发电机/ 库外 仍然暂停, 直到另一个函数( 可能是一个不同的函数/ 文本) 启用后, 请求下一个值( 通常通过输入数据将暂停的逻辑内部输入到 comutine 的代码 ) 。

您可以将皮延共程视为懒惰的递增待决列表, 下一个元素不仅取决于先前的计算, 而且还取决于输入, 您可以选择在生成过程中注射 。


贫提亚e

通常,大多数人不会关心以下的区别,可能想在这里停止阅读。

在 Python-speak 中, 迭代是“ 理解“ 循环概念” 的任何物体, 如列表[ 1, 2, 3] , 转动器是请求循环的具体实例, 如 [ 1, 2, 3,. . _ eter __ () 。 生成器与任何迭代器完全相同, 但它的写法除外( 带有函数语法 ) 。

当您从列表中请求一个迭代器时, 它会创建一个新的迭代器。 但是, 当您从一个迭代器中请求一个迭代器( 您很少会这样做 ) 时, 它只会给您一个副本 。

因此,在不可能的情况下,你没有 做这样的事情...

> x = myRange(5)
> list(x)
[0, 1, 2, 3, 4]
> list(x)
[]

... 然后记住发电机是一个迭代器, 也就是说, 它是一次性使用。 如果您想要再使用它, 您应该再次调用 MyRange (...) 。 如果您需要使用结果两次, 将结果转换为列表, 并存储在变量 x = 列表( MyRange (5)) 中。 那些绝对需要克隆生成器的人( 例如, 那些正在做可怕的黑客化元程序设计的人) 可以使用它的工具.tee( 仍然在 Python 3 中工作) , 如果绝对需要的话, 因为可复制的迭代器 Python PEP 标准建议已被推迟 。

输出允许您通过将循环部分乘以一个便于再利用的单独方法来写出更聪明的编剧。

假设你需要环绕电子表格的所有非空白行,对每行都做一些事情。

for i, row in df.iterrows(): #from the panda package for reading excel 
  if row = blank: # pseudo code, check if row is non-blank...
    continue
  if past_last_row: # pseudo code, check for end of input data
    break
  #### above is boring stuff, below is what we actually want to do with the data ###
  f(row)

如果您在类似循环中需要调用 g( row) , 您可能会发现自己重复了对数, 并重复了对数的检查, 有效行的检查是无聊、 复杂和容易出错的。 我们不想重复( DRY 原则 ) 。

您想要将检查每个记录的代码与实际处理行的代码区分开来, 例如 f( row) 和 g( row) 。

您可以设定一个函数, 将 f () 作为输入参数, 但是在一种方法中使用收益率要简单得多, 这种方法可以做所有关于检查有效行的无聊事情, 准备拨打 f () :

def valid_rows():
  for i, row in df.iterrows(): # iterate over each row of spreadsheet
    if row == blank: # pseudo code, check if row is non-blank...
      continue
    if past_last_row: # pseudo code, check for end of input data
      break
    yield i, row

请注意,该方法的每次调用都会返回下一行, 但如果所有行都读取, 并用于结束部分, 方法会正常返回。 下一次调用将开始新的循环 。

现在您可以在数据上写入迭代, 而不必重复对有效行进行无趣的检查( 现在根据自己的方法来计算) , 例如 :

for i, row in valid_rows():
  f(row)

for i, row in valid_rows():
  g(row)

nr_valid_rows = len(list(valid_rows()))

仅此而已。 请注意, 我还没有使用诸如 迭代器、 生成器、 协议、 共同常规等术语 。 我认为这个简单的例子 适用于我们日常的许多编码 。

这里所有的答案都很好,但其中只有一个(最受投票支持的)与你的代码如何运作有关。其他的与一般的发电机有关,也与它们如何运作有关。

所以,我不重复发电机是什么或产量是什么;我认为这些都包含在现有的答案中。然而,在花了几个小时试图理解一个与你的代码相似的代码之后,我将打破它是如何运作的。

您的代码绕过二进制树结构。 让我们以这棵树为例:

    5
   / \
  3   6
 / \   \
1   4   8

另一个简单的二进制搜索树的十字路口:

class Node(object):
..
def __iter__(self):
    if self.has_left_child():
        for child in self.left:
            yield child

    yield self.val

    if self.has_right_child():
        for child in self.right:
            yield child

执行代码在树形对象上,它执行__iter___这样:

def __iter__(self):

    class EmptyIter():
        def next(self):
            raise StopIteration

    if self.root:
        return self.root.__iter__()
    return EmptyIter()

候选人发言可用树上元素替换; Python 翻译为

it = iter(TreeObj)  # returns iter(self.root) which calls self.root.__iter__()
for element in it: 
    .. process element .. 

因为节点. _ iter_ 函数是一个生成器, 内部的代码按迭代执行 。 所以执行会是这样的 :

根元素是第一个; 检查它是否留下了孩子, 并且要循环它们( 因为我们叫它它 1 ) 。 它有一个孩子, 所以执行它。 给孩子自己。 左左为自己创建一个新的循环器 。 左是节点对象本身( it2) 。 左是同一逻辑 2 , 新的循环器已经创建( it3) 。 现在我们到达了树的左端 。 现在我们到达了树的左端。 它3 没有留下孩子, 所以它会继续下去并产生自我。 在下一个呼叫( it3) 时, 它会提高停止作用, 因为它没有正确的孩子( 到达函数的尽头, 但没有产生任何效果) 。 它1 和它2 仍然在活动 - 它们没有耗尽, 调用下一个( it2) 将产生值, 而不是提高停止作用 。 现在我们回到了它的上下文 2 , 并调下一个( it2) 继续它停止它的地方 : 在产生子声明之后 。 由于它没有更多的剩余孩子, 它会继续持续并产生自我 val 。 val 。

这里的渔获是,每次迭代都会产生次标准来绕过树,并保持当前迭代的状态。 一旦它到达终点,它就会绕过堆叠,并按正确的顺序返回值( 最小的收益值首先 ) 。

您的代码示例在一种不同的技术中做了类似的事情: 它为每个孩子输入了一个元素列表, 然后在下一个迭代中, 它弹出它, 并在当前对象上运行函数代码( 也就是自定义 ) 。

我希望这对这个传奇话题有一点帮助,我花了好几个小时来画这个过程来理解它。

收益率和返回一样, 它会返回任何您告诉它的东西( 作为生成器 ) 。 区别在于下次您调用生成器时, 执行从最后一次调用开始到收益语句 。 与返回不同的是, 当收益发生时, 堆叠框架不会被清理, 但是控制会被转回调回调用方, 因此下次调用函数时, 它的状态将会恢复 。

在您的代码中,函数获取_child_camedates 的动作就像一个迭代器,这样当您扩展列表时,它会一次在新列表中添加一个元素 。

列表。extendend calls a plerator until it's fulled it's explator until. 如果是您所贴的代码样本, 只需将图普还给列表, 并附加到列表中, 就会更加清楚 。