Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

TL; DR TR; TL; TDR

代替此:

def square_list(n):
    the_list = []                         # Replace
    for x in range(n):
        y = x * x
        the_list.append(y)                # these
    return the_list                       # lines

这样做:

def square_yield(n):
    for x in range(n):
        y = x * x
        yield y                           # with this one.

每当你发现自己从头开始编出一个清单时, 每一块都取而代之。

这是我第一次"啊哈"节奏节奏


收成是一种含糖的方式 说

构建一系列材料

相同行为 :

>>> for square in square_list(4):
...     print(square)
...
0
1
4
9
>>> for square in square_yield(4):
...     print(square)
...
0
1
4
9

不同的行为 :

产量是单行道,只能绕过一次。当一个函数有收益时,我们称它为发电机功能。循环者就是它的回报。这些术语是明亮的。我们失去了一个容器的方便,但获得一系列按需要计算并任意延长的能量。

是懒惰的, 它会推卸计算。 函数中含有收益的函数在调用时不会实际执行。 它返回一个循环器对象, 记得它留下的位置。 每次您在调用循环器时( 这发生在换环) 执行步数向下一个产数前进。 返回会提高停止输出并结束序列( 这是换圈的自然结束 ) 。

产量是多功能的。数据不必全部储存在一起, 它可以一次提供一次。 它可以是无限的 。

>>> def squares_all_of_them():
...     x = 0
...     while True:
...         yield x * x
...         x += 1
...
>>> squares = squares_all_of_them()
>>> for _ in range(4):
...     print(next(squares))
...
0
1
4
9

如果您需要多个通行证,且系列不会太长,请在电话列表上填写:

>>> list(square_yield(4))
[0, 1, 4, 9]

英明地选择“产生”一词,因为这两个含义都适用:

产量——生产或供应(如农业)

...在系列中提供下一个数据

放弃或放弃(与政治权力一样)

...在传动器推进之前,将CPU执行。

其他回答

在描述如何使用发电机的许多伟大答案中, 我感到还没有给出一种答案。 这是编程语言理论的答案:

Python 中的收益率语句返回了一个发电机。 Python 的发电机功能返回了连续性( 具体地说, 是一种共同的常规, 但连续性代表了了解情况的一般机制 ) 。

编程语言理论的继续是更根本的计算方法,但通常不会被使用,因为它们极难解释,也很难执行。但是,关于继续的理念很简单:是计算状态尚未完成。在这种状态下,变量的当前值、尚未执行的操作等等被保存。然后,在程序稍后的某个时候,可以援引继续,使程序的变量被重新设置到状态,保存的操作被执行。

以这种更一般的形式, 延续可以用两种方式执行 。 以调用/ cc 方式, 程序堆放的堆放被实际保存, 然后当继续使用时, 堆放被恢复 。

在继续传承风格(CPS)中,续编只是程序员明确管理和传到子例程的正常功能(仅在功能为头等语言的语文中),程序员明确管理和传到子例程。在这种风格中,程序状态代表关闭(和恰好在其中编码的变量),而不是堆叠中某处的变量。 管理控制流程的功能接受继续作为参数(在CPS的某些变异中,功能可能接受多重延续),并通过仅拨打这些函数来操纵控制流程,然后返回。一个非常简单的延续传承风格实例如下:

def save_file(filename):
  def write_file_continuation():
    write_stuff_to_file(filename)

  check_if_file_exists_and_user_wants_to_overwrite(write_file_continuation)

在此(非常简单化的)示例中,程序员将实际写入文件的操作保存为续存(这有可能是一个非常复杂的操作,有许多细节要写出来),然后将这一续存(即作为头等关闭)传递给另一个操作员,该操作员会做一些更多的处理,然后在必要时调用它。 (在实际的 GUI 编程中,我大量使用这种设计模式,要么是因为它可以节省我的代码线,要么更重要的是,在图形用户界面事件触发后管理控制流程。 )

这个职位的其余部分将不失为一般性,将连续性概念化为CPS, 因为它很容易理解和阅读。

现在让我们来谈谈Python 的发电机。 发电机是一种特定的子延续类型。 虽然继续一般能够保存计算状态( 即程序调用堆) , 但发电机只能保存循环器的循环状态 。 虽然这个定义对于发电机的某些使用案例来说有点误导 。 例如 :

def f():
  while True:
    yield 4

这显然是一个合理的可循环性,其行为是明确的 -- 每次发电机在发电机上转动时,它就会返回 4 (并永远这样做 ) 。但是,在考虑迭代器时,它可能并不是一种典型的可循环的类型(例如,收藏中的x:Do_hine(x) ) 。 这个例子说明了发电机的力量:如果有什么是迭代器,一个发电机可以保存其迭代状态。

需要重申: 继续可以保存程序堆叠的状态, 发电机可以保存循环状态 。 这意味着继续能力比发电机强大得多, 同时发电机也容易得多。 语言设计师更容易实施,程序设计员更容易使用( 如果您有时间燃烧, 试着读懂和理解关于继续和调用/ cc的页面 ) 。

但您可以很容易地实施(和概念化)发电机,作为延续传承风格的一个简单而具体的例子:

当调用产值时, 它会告诉函数返回一个延续。 当再次调用函数时, 它从它所剩的开始。 所以, 在伪假伪代码( 即不是伪代码, 但不是代码) 中, 生成器的下一个方法基本上如下 :

class Generator():
  def __init__(self,iterable,generatorfun):
    self.next_continuation = lambda:generatorfun(iterable)

  def next(self):
    value, next_continuation = self.next_continuation()
    self.next_continuation = next_continuation
    return value

当产出关键字实际上为实际生成功能的合成糖时, 基本上是类似 :

def generatorfun(iterable):
  if len(iterable) == 0:
    raise StopIteration
  else:
    return (iterable[0], lambda:generatorfun(iterable[1:]))

记住这只是假码,而Python发电机的实际安装则更为复杂。 但是,为了了解正在发生的事情,试图使用持续的传记风格来实施生成器,而不使用产出关键字。

许多人使用回报而不是生产,但在某些情况下,收益可以更有效和更便于工作。

这里的例子绝对是收成最佳的:

返回( 在函数)

import random

def return_dates():
    dates = [] # With 'return' you need to create a list then return it
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        dates.append(date)
    return dates

产出(在函数)

def yield_dates():
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        yield date # 'yield' makes a generator automatically which works
                   # in a similar way. This is much more efficient.

呼叫功能

dates_list = return_dates()
print(dates_list)
for i in dates_list:
    print(i)

dates_generator = yield_dates()
print(dates_generator)
for i in dates_generator:
    print(i)

两种函数都做同样的事情, 但产量使用三行而不是五行, 并且有一个更少的变量要担心。

这是代码的结果:

您可以看到两个函数都做相同的事情。 唯一的区别是 返回_ dates () 给出了列表, 而 收益_ dates () 给出了生成器 。

真实生活中的范例就是 逐行读取文件行 或者你只是想制造一个发电机

理解产出的快捷键

当您看到带产出语句的函数时,应用这个简单易懂的把戏来理解会发生什么:

在函数开始处插入行结果 = []。 以结果替换每个输出。 附录( 扩展) 。 在函数底部插入一行返回结果 。 耶 - 不再生成语句! 读取并解析代码。 将函数与原始定义比较 。

这个骗局也许能让你了解函数背后的逻辑, 但实际的收益率与列表法中发生的情况大不相同。 在许多情况下, 收益率法会提高记忆效率和速度。 在其他情况下, 这个骗局会让你陷入一个无限的循环, 即使最初的功能运作良好。 阅读以学习更多...

不要弄乱你的循环器 循环器和发电机

首先,当您写作时的循环程序协议

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

为我的列表获取一个代号 : 调用 exer( mylist) - > 这返回一个具有下一个( ) 方法( 或 __ next__ () () 在 Python 3 中) 的对象 [这是大多数人忘记告诉你 使用传动器环绕项目的步骤 : 继续调用从第 1 步返回的代名器上的下一个( ) 方法 。 下一个( ) 的返回值被指定给 x , 循环体被执行 。 如果从下一个( ) 中提出例外 停止 , 这意味着在循环器中没有更多的值, 循环被退出 。

真相是 Python 执行上述两个步骤, 每当它想绕过对象的内容时, 都会执行上述两个步骤 - 所以它可以是环绕, 但它也可以像其它列表一样是代码 。 extendend( mylist) ( 其中其他列表是 Python 列表 ) 。

这里的我的列表是可替换的, 因为它执行的是循环协议 。 在用户定义的类别中, 您可以使用 ` iter__ () 方法使分类的循环性实例可以被使用。 此方法应该返回一个循环器。 循环器是一个带有下一个( ) 方法的对象。 在同一类中可以同时执行 _ iter__ () 和 下一个( ) , 并有 _ iter__ () 返回自我 。 这将对简单案例有效, 但当您想要两个循环器同时绕过同一个对象时则不行 。

这就是传动程序,许多物体执行这个程序:

内置列表、 词典、 图普尔、 集和文件。 执行 ` iter__ () 的用户定义的分类 。 发电机 。

注意“ 循环” 并不知道它所处理的物体是什么类型 - 它只是遵循了循环程序, 并且乐意在下一个( ) 调用时按项目逐项获得项目 。 内建列表逐项返回项目, 字典逐项返回关键词, 文件逐行返回行等 。 而发电机则返回... 也就是产出来源所在 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

而不是输出语句, 如果您在 f123 () 中有三个返回语句, 只有第一个将被执行, 而函数会退出 。 但是 f123 () 并不是普通函数 。 当调用 f123 () 时, 它不会返回产值语句中的任何值 。 它返回一个生成对象 。 另外, 该函数并不真正退出 - 它会进入一个中止状态 。 当循环尝试在生成对象上循环时, 函数会从先前返回的产值之后的下一行的中止状态恢复到下一行的状态, 执行下一行代码, 在此情况下, 产生语句, 并返回为下一个项目 。 这一直发生到函数退出, 此时, 生成器将启动暂停, 以及循环退出 。

因此,生成器对象有点像一个适配器 — — 在一端,它展示了迭代程序, 暴露了 `iter___ () 和下一个 () 方法来保持循环的快乐。 但是,在另一端, 它运行着功能, 足以将下一个值调出, 并把它放回中止模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但执行相同的逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 比如, 如果您有无限环, 或者当您有非常长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类别“ 某些东西 ” , 将国家保留在成员中, 并在下一个( ) ( 或 Python 3 ) 方法中执行下一个逻辑步骤 。 根据逻辑, 下一个( ) 方法中的代码可能最终会查找非常复杂和易被错误的代码 。 在这里, 生成器可以提供一个简单明了的解决方案 。

也可以将数据发送回生成器!

事实上,正如这里许多答案所解释的那样,利用产量产生一个发电机。

您可以使用产出关键字将数据发送回“实时”生成器。

示例:

假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。

def translator():
    # load all the words in English language and the translation to 'other lang'
    my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}

    while True:
        word = (yield)
        yield my_words_dict.get(word, 'Unknown word...')

运行中 :

my_words_translator = translator()

next(my_words_translator)
print(my_words_translator.send('dog'))

next(my_words_translator)
print(my_words_translator.send('cat'))

将打印 :

dog in other language
Unknown word...

概括如下:

使用发件人内部发送方法将数据发送回发件人。要允许,使用 a (ield) 。

总之,产出语句将您的函数转换成一个工厂,该工厂生产一个特殊对象,称为发电机,围绕您原始函数的正文包绕。当生成器被迭代时,它将执行您的函数,直到达到下一个输出时,然后中止执行,然后对传递到的数值进行评估。它重复了每次迭代的这一过程,直到执行路径退出函数。例如,

def simple_generator():
    yield 'one'
    yield 'two'
    yield 'three'

for i in simple_generator():
    print i

简单产出

one
two
three

电源来自使用循环计算序列的生成器, 生成器执行循环每次停止到“ ield ” 的下一个计算结果, 这样它就可以计算飞行上的列表, 好处是存储到特别大的计算中的内存

说你想创建一个自己的范围函数, 产生一个可循环的数字范围, 你可以这样做,

def myRangeNaive(i):
    n = 0
    range = []
    while n < i:
        range.append(n)
        n = n + 1
    return range

并像这样使用它;

for i in myRangeNaive(10):
    print i

但这效率低,因为

您创建了一个只使用一次的数组( 此废物内存) 。 此代码实际上会两次循环到该数组上 ! : () : ()

幸好吉多和他的团队 慷慨地开发了发电机 这样我们就可以这么做了

def myRangeSmart(i):
    n = 0
    while n < i:
       yield n
       n = n + 1
    return

for i in myRangeSmart(10):
    print i

在每次迭代中, 调用下一个发电机的函数执行该函数, 直至它到达“ ield” 语句停止和“ ields” 值, 或到达函数的终点。 在第一次调用的情况下, 下一个( ) 执行到产出语句, 并产生“ n ” , 下次调用它将执行递增语句, 跳回“ 此时” , 评估它, 如果是, 它会停止并再次产生“ n ” , 它会一直持续到状态返回错误, 发电机跳到函数结束的时候 。