Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

TL; DR TR; TL; TDR

代替此:

def square_list(n):
    the_list = []                         # Replace
    for x in range(n):
        y = x * x
        the_list.append(y)                # these
    return the_list                       # lines

这样做:

def square_yield(n):
    for x in range(n):
        y = x * x
        yield y                           # with this one.

每当你发现自己从头开始编出一个清单时, 每一块都取而代之。

这是我第一次"啊哈"节奏节奏


收成是一种含糖的方式 说

构建一系列材料

相同行为 :

>>> for square in square_list(4):
...     print(square)
...
0
1
4
9
>>> for square in square_yield(4):
...     print(square)
...
0
1
4
9

不同的行为 :

产量是单行道,只能绕过一次。当一个函数有收益时,我们称它为发电机功能。循环者就是它的回报。这些术语是明亮的。我们失去了一个容器的方便,但获得一系列按需要计算并任意延长的能量。

是懒惰的, 它会推卸计算。 函数中含有收益的函数在调用时不会实际执行。 它返回一个循环器对象, 记得它留下的位置。 每次您在调用循环器时( 这发生在换环) 执行步数向下一个产数前进。 返回会提高停止输出并结束序列( 这是换圈的自然结束 ) 。

产量是多功能的。数据不必全部储存在一起, 它可以一次提供一次。 它可以是无限的 。

>>> def squares_all_of_them():
...     x = 0
...     while True:
...         yield x * x
...         x += 1
...
>>> squares = squares_all_of_them()
>>> for _ in range(4):
...     print(next(squares))
...
0
1
4
9

如果您需要多个通行证,且系列不会太长,请在电话列表上填写:

>>> list(square_yield(4))
[0, 1, 4, 9]

英明地选择“产生”一词,因为这两个含义都适用:

产量——生产或供应(如农业)

...在系列中提供下一个数据

放弃或放弃(与政治权力一样)

...在传动器推进之前,将CPU执行。

其他回答

产出关键字简化为两个简单的事实:

如果编译者在函数内的任何地方检测到产出关键字,则该关键字函数不再通过返回语句返回。相反,它会立即返回一个称为生成器的懒惰的“待决列表”对象。“生成器”是可循环的。什么是可循环的?它像列表或设置或范围或编辑视图一样,带有按一定顺序访问每个元素的内置协议。

简言之: 最常见的情况是, 发电机是一个懒惰的、 递增的等待列表, 并且产出语句允许您使用函数符号来编程生成器应该逐渐吐出的列表值。 此外, 高级用法允许您使用发电机作为共程( 见下文 ) 。

generator = myYieldingFunction(...)  # basically a list (but lazy)
x = list(generator)  # evaluate every element into a list

   generator
       v
[x[0], ..., ???]

         generator
             v
[x[0], x[1], ..., ???]

               generator
                   v
[x[0], x[1], x[2], ..., ???]

                       StopIteration exception
[x[0], x[1], x[2]]     done

基本上, 只要遇到产出语句, 函数就会暂停并保存状态, 然后根据 Python 传动协议( 在某些合成结构中, 类似反复呼叫下一个( ) 的循环, 并捕捉一个停止作用的例外等) , 发出“ 列表中的下一个返回值 ” 。 您可能遇到过带有生成表达式的生成器; 生成函数更强大, 因为您可以将参数反馈到暂停的生成器功能中, 使用它们来实施 comutines 。 稍后会更多 。


基本示例(“清单”)

我们来定义一个函数,它就像 Python 的射程。 调用 makeRange(n) returns a Generator:

def makeRange(n):
    # return 0,1,2,...,n-1
    i = 0
    while i < n:
        yield i
        i += 1

>>> makeRange(5)
<generator object makeRange at 0x19e4aa0>

要强制生成器立即返回其未完成的值, 您可以将它传送到列表 () (就像您可以任意使用 ) :

>>> list(makeRange(5))
[0, 1, 2, 3, 4]

比较“仅返回列表”的示例

上述例子可视为仅仅是创建一份清单,并附在后面并返回:

# return a list                  #  # return a generator
def makeRange(n):                #  def makeRange(n):
    """return [0,1,2,...,n-1]""" #      """return 0,1,2,...,n-1"""
    TO_RETURN = []               # 
    i = 0                        #      i = 0
    while i < n:                 #      while i < n:
        TO_RETURN += [i]         #          yield i
        i += 1                   #          i += 1
    return TO_RETURN             # 

>>> makeRange(5)
[0, 1, 2, 3, 4]

不过,有一个重大差别;见最后一节。


您如何使用发电机

所有发电机都是易变的, 所以它们经常被这样使用:

#                  < ITERABLE >
>>> [x+10 for x in makeRange(5)]
[10, 11, 12, 13, 14]

要对发电机有更好的感觉,您可以玩过工具模块( 一定要使用链。 来自_ irightable, 而不是当必要时使用链子 ) 。 例如, 您甚至可以使用生成器来实施无限长的懒惰列表, 比如 ltertools. counts () 。 您可以执行您自己的除法列表( 可认证的) : zip( 计数 ) , 或使用一段时间内生成关键字来这样做 。

请注意: 发电机实际上可以用于更多的事情, 比如实施 comotines 或非 确定性编程或其他优雅的东西。 然而, 我在此介绍的“ 懒惰列表” 观点是您最常用的 。


幕后幕后

这就是“ Python 迭代协议” 的原理。 也就是说, 当您做列表( makeRange(5)) 时会发生什么 。 这就是我前面描述的“ 懒惰、 递增列表 ” 。

>>> x=iter(range(5))
>>> next(x)  # calls x.__next__(); x.next() is deprecated
0
>>> next(x)
1
>>> next(x)
2
>>> next(x)
3
>>> next(x)
4
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

内建函数的下一个 () 只是调用对象 ._next__ () 函数, 这是“ 电路协议” 的一部分, 并在所有迭代器中找到 。 您可以手动使用下一个( ) 函数( 和迭代协议的其他部分) 来执行奇特的东西, 通常以降低可读性为代价, 所以尽量避免这样做...


锥体

圆柱形示例:

def interactiveProcedure():
    userResponse = yield makeQuestionWebpage()
    print('user response:', userResponse)
    yield 'success'

coroutine = interactiveProcedure()
webFormData = next(coroutine)  # same as .send(None)
userResponse = serveWebForm(webFormData)

# ...at some point later on web form submit...

successStatus = coroutine.send(userResponse)

comotine (generations 通常接受通过 产出 关键字输入输入 , 例如, 下一个 Input = 产生下一个输出, 作为一种双向通信形式) 基本上是允许暂停自己和请求输入的计算( 例如它下一步应该做什么 ) 。 当 comotine 暂停自己( 当运行中的 comotine 最终会点击 产出 关键字时) , 计算会暂停, 控制会被倒回“ 调” 函数( 要求下一个计算值的框架 ) 。 暂停的发电机/ 库外 仍然暂停, 直到另一个函数( 可能是一个不同的函数/ 文本) 启用后, 请求下一个值( 通常通过输入数据将暂停的逻辑内部输入到 comutine 的代码 ) 。

您可以将皮延共程视为懒惰的递增待决列表, 下一个元素不仅取决于先前的计算, 而且还取决于输入, 您可以选择在生成过程中注射 。


贫提亚e

通常,大多数人不会关心以下的区别,可能想在这里停止阅读。

在 Python-speak 中, 迭代是“ 理解“ 循环概念” 的任何物体, 如列表[ 1, 2, 3] , 转动器是请求循环的具体实例, 如 [ 1, 2, 3,. . _ eter __ () 。 生成器与任何迭代器完全相同, 但它的写法除外( 带有函数语法 ) 。

当您从列表中请求一个迭代器时, 它会创建一个新的迭代器。 但是, 当您从一个迭代器中请求一个迭代器( 您很少会这样做 ) 时, 它只会给您一个副本 。

因此,在不可能的情况下,你没有 做这样的事情...

> x = myRange(5)
> list(x)
[0, 1, 2, 3, 4]
> list(x)
[]

... 然后记住发电机是一个迭代器, 也就是说, 它是一次性使用。 如果您想要再使用它, 您应该再次调用 MyRange (...) 。 如果您需要使用结果两次, 将结果转换为列表, 并存储在变量 x = 列表( MyRange (5)) 中。 那些绝对需要克隆生成器的人( 例如, 那些正在做可怕的黑客化元程序设计的人) 可以使用它的工具.tee( 仍然在 Python 3 中工作) , 如果绝对需要的话, 因为可复制的迭代器 Python PEP 标准建议已被推迟 。

收益率与返回率相似。区别是:

函数输出使函数可循环( 在以下示例中, 质数( n= 1) 函数成为可循环的 )。 它基本上意味着下次调用函数时, 它会从它离开的地方( 以产出表达式的线为后方) 继续 。

def isprime(n):
    if n == 1:
        return False
    for x in range(2, n):
        if n % x == 0:
            return False
    else:
        return True

def primes(n = 1):
   while(True):
       if isprime(n): yield n
       n += 1 

for n in primes():
    if n > 100: break
    print(n)

在上述例子中, 如果是inprime( n) 是真实的, 它会返回质号。 在下一个迭代中, 它会从下一行继续

n += 1  

关键要点

Python 的语法库使用输出关键字的存在来设定返回生成器的函数。 生成器是一种迭代器, 这是一种在 Python 中循环的主要方式。 生成器本质上是一个可回收的函数。 与返回返回值和结束函数不同的是, 生成关键字返回一个值和中止函数。 当下一个( g) 被调用到生成器时, 函数会恢复它所剩的功能。 只有当函数遇到一个明示或暗示返回时, 它才会实际结束 。

书写和理解发电机技术

一个理解和思考发电机的简单方法就是用印刷品()而不是产量来撰写一个常规函数:

def f(n):
    for x in range(n):
        print(x)
        print(x * 10)

注意它的产出:

>>> f(3)
0
0
1
10
2
2

3⁄4 ̄ ̧漯B

def f(n):
    for x in range(n):
        yield x
        yield x * 10

给 :

>>> list(f(3))
[0, 0, 1, 10, 2, 20]

迭代程序协议

答案“什么产量能做什么”可以是简短和简单的, 但是它是更大的世界的一部分, 所谓的“标准协议”。

在迭代协议的发送方,有两种相关的对象。可循环的物体是您可以绕过的东西。迭代器是跟踪环状状态的物体。

在迭代协议的消费方方面,我们调用可迭代对象的迭代者获得一个迭代者。然后我们调用下一个迭代者从迭代器中获取值。当没有更多数据时,会提出一个停止使用例外 :

>>> s = [10, 20, 30]    # The list is the "iterable"
>>> it = iter(s)        # This is the "iterator"
>>> next(it)            # Gets values out of an iterator
10
>>> next(it)
20
>>> next(it)
30
>>> next(it)
Traceback (most recent call last):
 ...
StopIteration

为了让这一切变得更容易, 对于卢布人来说,叫它, 下一个代表我们:

>>> for x in s:
...     print(x)
...   
10
20
30

一个人可以写一本关于这一切的书, 但这些都是关键点。 当我教授 Python 课程时, 我发现这是一个最起码的足够解释 来建立理解, 并马上开始使用它。 特别是, 用打印写一个函数, 测试它, 然后转换成收益的技巧, 似乎对 Python 各级程序员都有效 。

所有的答案都是伟大的, 但对于新人来说有点困难。

我猜你已经得知回程声明了

作为类比,回归和收益是双胞胎。 回归意味着“ 回归和停止 ” , 而“ 回归”则意味着“回归,但继续 ” 。

尝试获得一份有回报的 num_ 列表 。

def num_list(n):
    for i in range(n):
        return i

运行它:

In [5]: num_list(3)
Out[5]: 0

你看,你只得到一个数字,而不是一个他们的名单。返回永远不允许你快乐地获胜,只要执行一次就退出。

产生结果

将返回替换为产出 :

In [10]: def num_list(n):
    ...:     for i in range(n):
    ...:         yield i
    ...:

In [11]: num_list(3)
Out[11]: <generator object num_list at 0x10327c990>

In [12]: list(num_list(3))
Out[12]: [0, 1, 2]

现在,你赢得了所有的数字。

与一次运行和停止的返回相比, 一次运行和一次运行, 一次运行和一次运行。 您可以将返回解释为一个返回, 一次返回作为全部返回。 这叫“ 易动 ” 。

再多走一步,我们就可以重新写出回报的收益声明

In [15]: def num_list(n):
    ...:     result = []
    ...:     for i in range(n):
    ...:         result.append(i)
    ...:     return result

In [16]: num_list(3)
Out[16]: [0, 1, 2]

这是关于产量的核心。

列表返回输出与目标产出的区别是:

您总是可以从列表对象中获取 [0, 1, 2] , 但只能从“ 对象输出输出” 中提取一次 。 因此, 它有一个新的名称生成对象, 如 Out[ 11] 所示 : <generator 对象 num_ list at 0x10327c990> 。

最后,作为格罗克语的比喻:

双胞胎名单和发电机是双胞胎

python 的输出与返回语句类似,但有些差异除外。如果要从函数返回多个值,返回语句将把所有值都作为列表返回,并将其存储在调用符块的内存中。但如果我们不想使用额外的内存,会怎样?相反,我们需要在需要时从函数中获取该值。这是产出的来源。考虑以下函数:

def fun():
   yield 1
   yield 2
   yield 3

打电话的人是:

def caller():
   print ('First value printing')
   print (fun())
   print ('Second value printing')
   print (fun())
   print ('Third value printing')
   print (fun())

上述代码段(调用函数),如果调用,产出:-

First value printing
1
Second value printing
2
Third value printing
3

从上文可以看出, 产出返回其调用器的值, 但当函数再次调用时, 它不会从第一个语句开始, 而是从产出后右侧的语句开始。 在上述示例中, “ 第一值打印” 打印, 函数被调用。 1 被回传并打印。 然后, 打印“ 第二值打印” , 并再次调用有趣 () 。 它不打印 1 (第一个语句) , 而是返回 2 , 也就是说, 仅从产出 1 之后的语句 。 同样的程序会进一步重复 。