Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

以下是一个简单的例子:

def isPrimeNumber(n):
    print "isPrimeNumber({}) call".format(n)
    if n==1:
        return False
    for x in range(2,n):
        if n % x == 0:
            return False
    return True

def primes (n=1):
    while(True):
        print "loop step ---------------- {}".format(n)
        if isPrimeNumber(n): yield n
        n += 1

for n in primes():
    if n> 10:break
    print "wiriting result {}".format(n)

产出:

loop step ---------------- 1
isPrimeNumber(1) call
loop step ---------------- 2
isPrimeNumber(2) call
loop step ---------------- 3
isPrimeNumber(3) call
wiriting result 3
loop step ---------------- 4
isPrimeNumber(4) call
loop step ---------------- 5
isPrimeNumber(5) call
wiriting result 5
loop step ---------------- 6
isPrimeNumber(6) call
loop step ---------------- 7
isPrimeNumber(7) call
wiriting result 7
loop step ---------------- 8
isPrimeNumber(8) call
loop step ---------------- 9
isPrimeNumber(9) call
loop step ---------------- 10
isPrimeNumber(10) call
loop step ---------------- 11
isPrimeNumber(11) call

我不是Python开发者,但对我来说,它似乎保持了程序流程的位置,而下一个循环则从“当量”的位置开始。 它似乎正在等待着这个位置,就在那个位置之前,它正在向外回报一个价值,而下一次将继续工作。

这似乎是一个有趣和好的能力:

其他回答

简单使用实例 :

>>> def foo():
    yield 100
    yield 20
    yield 3

    
>>> for i in foo(): print(i)

100
20
3
>>> 

如何运行 : 调用时, 函数会立即返回对象。 对象可以传递到下一个( ) 函数 。 当调用下一个( ) 函数时, 您的函数会一直运行到下一个产值, 并为下一个( ) 函数提供返回值 。

在引擎盖下, 循环确认对象是一个生成对象, 并使用下一个( ) 来获取下一个值 。

在一些语言中,比如ES6和更高语言中,它的实施略有不同, 所以下一个是生成对象的成员函数, 每次它得到下一个值时, 你就可以从调用器中传递数值。 所以如果结果是生成器, 那么你可以做类似y=结果。 ext( 555) , 而程序生成值可以说像 z = 产值 999 。 y 的值将是 999 , 下一个产值是 999, 而 z 的值将是 555 , 下一个产值是 555。 Python 获取并发送方法也有类似的效果 。

还有一件事情要提: 产量的函数其实不一定要终止。我写了这样的代码:

def fib():
    last, cur = 0, 1
    while True: 
        yield cur
        last, cur = cur, last + cur

这样我就可以用在别的代码里了

for f in fib():
    if some_condition: break
    coolfuncs(f);

它确实有助于简化一些问题,使一些事情更容易处理。

TL; DR TR; TL; TDR

代替此:

def square_list(n):
    the_list = []                         # Replace
    for x in range(n):
        y = x * x
        the_list.append(y)                # these
    return the_list                       # lines

这样做:

def square_yield(n):
    for x in range(n):
        y = x * x
        yield y                           # with this one.

每当你发现自己从头开始编出一个清单时, 每一块都取而代之。

这是我第一次"啊哈"节奏节奏


收成是一种含糖的方式 说

构建一系列材料

相同行为 :

>>> for square in square_list(4):
...     print(square)
...
0
1
4
9
>>> for square in square_yield(4):
...     print(square)
...
0
1
4
9

不同的行为 :

产量是单行道,只能绕过一次。当一个函数有收益时,我们称它为发电机功能。循环者就是它的回报。这些术语是明亮的。我们失去了一个容器的方便,但获得一系列按需要计算并任意延长的能量。

是懒惰的, 它会推卸计算。 函数中含有收益的函数在调用时不会实际执行。 它返回一个循环器对象, 记得它留下的位置。 每次您在调用循环器时( 这发生在换环) 执行步数向下一个产数前进。 返回会提高停止输出并结束序列( 这是换圈的自然结束 ) 。

产量是多功能的。数据不必全部储存在一起, 它可以一次提供一次。 它可以是无限的 。

>>> def squares_all_of_them():
...     x = 0
...     while True:
...         yield x * x
...         x += 1
...
>>> squares = squares_all_of_them()
>>> for _ in range(4):
...     print(next(squares))
...
0
1
4
9

如果您需要多个通行证,且系列不会太长,请在电话列表上填写:

>>> list(square_yield(4))
[0, 1, 4, 9]

英明地选择“产生”一词,因为这两个含义都适用:

产量——生产或供应(如农业)

...在系列中提供下一个数据

放弃或放弃(与政治权力一样)

...在传动器推进之前,将CPU执行。

这里所有的答案都很好,但其中只有一个(最受投票支持的)与你的代码如何运作有关。其他的与一般的发电机有关,也与它们如何运作有关。

所以,我不重复发电机是什么或产量是什么;我认为这些都包含在现有的答案中。然而,在花了几个小时试图理解一个与你的代码相似的代码之后,我将打破它是如何运作的。

您的代码绕过二进制树结构。 让我们以这棵树为例:

    5
   / \
  3   6
 / \   \
1   4   8

另一个简单的二进制搜索树的十字路口:

class Node(object):
..
def __iter__(self):
    if self.has_left_child():
        for child in self.left:
            yield child

    yield self.val

    if self.has_right_child():
        for child in self.right:
            yield child

执行代码在树形对象上,它执行__iter___这样:

def __iter__(self):

    class EmptyIter():
        def next(self):
            raise StopIteration

    if self.root:
        return self.root.__iter__()
    return EmptyIter()

候选人发言可用树上元素替换; Python 翻译为

it = iter(TreeObj)  # returns iter(self.root) which calls self.root.__iter__()
for element in it: 
    .. process element .. 

因为节点. _ iter_ 函数是一个生成器, 内部的代码按迭代执行 。 所以执行会是这样的 :

根元素是第一个; 检查它是否留下了孩子, 并且要循环它们( 因为我们叫它它 1 ) 。 它有一个孩子, 所以执行它。 给孩子自己。 左左为自己创建一个新的循环器 。 左是节点对象本身( it2) 。 左是同一逻辑 2 , 新的循环器已经创建( it3) 。 现在我们到达了树的左端 。 现在我们到达了树的左端。 它3 没有留下孩子, 所以它会继续下去并产生自我。 在下一个呼叫( it3) 时, 它会提高停止作用, 因为它没有正确的孩子( 到达函数的尽头, 但没有产生任何效果) 。 它1 和它2 仍然在活动 - 它们没有耗尽, 调用下一个( it2) 将产生值, 而不是提高停止作用 。 现在我们回到了它的上下文 2 , 并调下一个( it2) 继续它停止它的地方 : 在产生子声明之后 。 由于它没有更多的剩余孩子, 它会继续持续并产生自我 val 。 val 。

这里的渔获是,每次迭代都会产生次标准来绕过树,并保持当前迭代的状态。 一旦它到达终点,它就会绕过堆叠,并按正确的顺序返回值( 最小的收益值首先 ) 。

您的代码示例在一种不同的技术中做了类似的事情: 它为每个孩子输入了一个元素列表, 然后在下一个迭代中, 它弹出它, 并在当前对象上运行函数代码( 也就是自定义 ) 。

我希望这对这个传奇话题有一点帮助,我花了好几个小时来画这个过程来理解它。

(我下面的回答只是从使用Python发电机的角度,而不是从发电机机制的基本实施角度,后者涉及一些堆叠和堆积操纵的伎俩。 )

当在 python 函数中使用 quot 而不是返回时, 该函数将被转换为特殊的名称 。 此函数将返回生成器类型的对象 。 产量关键字是提醒 python 编译器专门处理此函数的旗帜 。 正常函数一旦从中返回某些值就会终止 。 但是, 在编译器的帮助下, 生成器的函数可以被视为可恢复 。 也就是说, 执行环境将会恢复, 执行会从上次运行时继续 。 直到您明确调回, 这会引起一个停止引力例外( 也是循环协议的一部分) , 或者到达函数的终点 。 我发现许多关于生成器的引用, 但从功能编程角度来说, 这是一种最可消化的引用 。

(现在我想谈谈产生者背后的理由, 以及基于我自己的理解的循环器。 我希望这能帮助你掌握循环器和生成者的基本动机。 这一概念以其他语言出现, 如 C# 。 )

据我所知,当我们想要处理一大批数据时,我们通常先在某处储存数据,然后逐个处理。但这种天真的方法有问题。如果数据量很大,那么事先将数据全部储存起来费用很高。因此,与其直接储存数据本身,不如间接储存某种元数据,即数据计算逻辑。

有两种方法可以包扎这类元数据。

OO 方法, 我们把元数据包成一个类。 这是执行循环协议( 即 __ next_ () 和 __ ter_ () 方法) 的所谓迭代器。 这也是常见的迭代器设计模式 。 功能方法, 我们将元数据包成函数 。 这是所谓的生成功能 。 但是在引擎盖下, 返回的生成对象仍然是 IS - A 迭代器, 因为它也执行循环程序 。

无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。