Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

一个容易理解它是什么的简单例子:产量

def f123():
    for _ in range(4):
        yield 1
        yield 2


for i in f123():
    print (i)

产出是:

1 2 1 2 1 2 1 2

其他回答

(我下面的回答只是从使用Python发电机的角度,而不是从发电机机制的基本实施角度,后者涉及一些堆叠和堆积操纵的伎俩。 )

当在 python 函数中使用 quot 而不是返回时, 该函数将被转换为特殊的名称 。 此函数将返回生成器类型的对象 。 产量关键字是提醒 python 编译器专门处理此函数的旗帜 。 正常函数一旦从中返回某些值就会终止 。 但是, 在编译器的帮助下, 生成器的函数可以被视为可恢复 。 也就是说, 执行环境将会恢复, 执行会从上次运行时继续 。 直到您明确调回, 这会引起一个停止引力例外( 也是循环协议的一部分) , 或者到达函数的终点 。 我发现许多关于生成器的引用, 但从功能编程角度来说, 这是一种最可消化的引用 。

(现在我想谈谈产生者背后的理由, 以及基于我自己的理解的循环器。 我希望这能帮助你掌握循环器和生成者的基本动机。 这一概念以其他语言出现, 如 C# 。 )

据我所知,当我们想要处理一大批数据时,我们通常先在某处储存数据,然后逐个处理。但这种天真的方法有问题。如果数据量很大,那么事先将数据全部储存起来费用很高。因此,与其直接储存数据本身,不如间接储存某种元数据,即数据计算逻辑。

有两种方法可以包扎这类元数据。

OO 方法, 我们把元数据包成一个类。 这是执行循环协议( 即 __ next_ () 和 __ ter_ () 方法) 的所谓迭代器。 这也是常见的迭代器设计模式 。 功能方法, 我们将元数据包成函数 。 这是所谓的生成功能 。 但是在引擎盖下, 返回的生成对象仍然是 IS - A 迭代器, 因为它也执行循环程序 。

无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。

用于创建生成器 。 将生成器想象成一个迭代器 highc , 给您每个迭代值 。 当您在循环中使用 收益率 时, 就会得到一个生成器对象, 您可以用该对象从循环中以迭接方式从循环中获取项目 。

产出关键字简化为两个简单的事实:

如果编译者在函数内的任何地方检测到产出关键字,则该关键字函数不再通过返回语句返回。相反,它会立即返回一个称为生成器的懒惰的“待决列表”对象。“生成器”是可循环的。什么是可循环的?它像列表或设置或范围或编辑视图一样,带有按一定顺序访问每个元素的内置协议。

简言之: 最常见的情况是, 发电机是一个懒惰的、 递增的等待列表, 并且产出语句允许您使用函数符号来编程生成器应该逐渐吐出的列表值。 此外, 高级用法允许您使用发电机作为共程( 见下文 ) 。

generator = myYieldingFunction(...)  # basically a list (but lazy)
x = list(generator)  # evaluate every element into a list

   generator
       v
[x[0], ..., ???]

         generator
             v
[x[0], x[1], ..., ???]

               generator
                   v
[x[0], x[1], x[2], ..., ???]

                       StopIteration exception
[x[0], x[1], x[2]]     done

基本上, 只要遇到产出语句, 函数就会暂停并保存状态, 然后根据 Python 传动协议( 在某些合成结构中, 类似反复呼叫下一个( ) 的循环, 并捕捉一个停止作用的例外等) , 发出“ 列表中的下一个返回值 ” 。 您可能遇到过带有生成表达式的生成器; 生成函数更强大, 因为您可以将参数反馈到暂停的生成器功能中, 使用它们来实施 comutines 。 稍后会更多 。


基本示例(“清单”)

我们来定义一个函数,它就像 Python 的射程。 调用 makeRange(n) returns a Generator:

def makeRange(n):
    # return 0,1,2,...,n-1
    i = 0
    while i < n:
        yield i
        i += 1

>>> makeRange(5)
<generator object makeRange at 0x19e4aa0>

要强制生成器立即返回其未完成的值, 您可以将它传送到列表 () (就像您可以任意使用 ) :

>>> list(makeRange(5))
[0, 1, 2, 3, 4]

比较“仅返回列表”的示例

上述例子可视为仅仅是创建一份清单,并附在后面并返回:

# return a list                  #  # return a generator
def makeRange(n):                #  def makeRange(n):
    """return [0,1,2,...,n-1]""" #      """return 0,1,2,...,n-1"""
    TO_RETURN = []               # 
    i = 0                        #      i = 0
    while i < n:                 #      while i < n:
        TO_RETURN += [i]         #          yield i
        i += 1                   #          i += 1
    return TO_RETURN             # 

>>> makeRange(5)
[0, 1, 2, 3, 4]

不过,有一个重大差别;见最后一节。


您如何使用发电机

所有发电机都是易变的, 所以它们经常被这样使用:

#                  < ITERABLE >
>>> [x+10 for x in makeRange(5)]
[10, 11, 12, 13, 14]

要对发电机有更好的感觉,您可以玩过工具模块( 一定要使用链。 来自_ irightable, 而不是当必要时使用链子 ) 。 例如, 您甚至可以使用生成器来实施无限长的懒惰列表, 比如 ltertools. counts () 。 您可以执行您自己的除法列表( 可认证的) : zip( 计数 ) , 或使用一段时间内生成关键字来这样做 。

请注意: 发电机实际上可以用于更多的事情, 比如实施 comotines 或非 确定性编程或其他优雅的东西。 然而, 我在此介绍的“ 懒惰列表” 观点是您最常用的 。


幕后幕后

这就是“ Python 迭代协议” 的原理。 也就是说, 当您做列表( makeRange(5)) 时会发生什么 。 这就是我前面描述的“ 懒惰、 递增列表 ” 。

>>> x=iter(range(5))
>>> next(x)  # calls x.__next__(); x.next() is deprecated
0
>>> next(x)
1
>>> next(x)
2
>>> next(x)
3
>>> next(x)
4
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

内建函数的下一个 () 只是调用对象 ._next__ () 函数, 这是“ 电路协议” 的一部分, 并在所有迭代器中找到 。 您可以手动使用下一个( ) 函数( 和迭代协议的其他部分) 来执行奇特的东西, 通常以降低可读性为代价, 所以尽量避免这样做...


锥体

圆柱形示例:

def interactiveProcedure():
    userResponse = yield makeQuestionWebpage()
    print('user response:', userResponse)
    yield 'success'

coroutine = interactiveProcedure()
webFormData = next(coroutine)  # same as .send(None)
userResponse = serveWebForm(webFormData)

# ...at some point later on web form submit...

successStatus = coroutine.send(userResponse)

comotine (generations 通常接受通过 产出 关键字输入输入 , 例如, 下一个 Input = 产生下一个输出, 作为一种双向通信形式) 基本上是允许暂停自己和请求输入的计算( 例如它下一步应该做什么 ) 。 当 comotine 暂停自己( 当运行中的 comotine 最终会点击 产出 关键字时) , 计算会暂停, 控制会被倒回“ 调” 函数( 要求下一个计算值的框架 ) 。 暂停的发电机/ 库外 仍然暂停, 直到另一个函数( 可能是一个不同的函数/ 文本) 启用后, 请求下一个值( 通常通过输入数据将暂停的逻辑内部输入到 comutine 的代码 ) 。

您可以将皮延共程视为懒惰的递增待决列表, 下一个元素不仅取决于先前的计算, 而且还取决于输入, 您可以选择在生成过程中注射 。


贫提亚e

通常,大多数人不会关心以下的区别,可能想在这里停止阅读。

在 Python-speak 中, 迭代是“ 理解“ 循环概念” 的任何物体, 如列表[ 1, 2, 3] , 转动器是请求循环的具体实例, 如 [ 1, 2, 3,. . _ eter __ () 。 生成器与任何迭代器完全相同, 但它的写法除外( 带有函数语法 ) 。

当您从列表中请求一个迭代器时, 它会创建一个新的迭代器。 但是, 当您从一个迭代器中请求一个迭代器( 您很少会这样做 ) 时, 它只会给您一个副本 。

因此,在不可能的情况下,你没有 做这样的事情...

> x = myRange(5)
> list(x)
[0, 1, 2, 3, 4]
> list(x)
[]

... 然后记住发电机是一个迭代器, 也就是说, 它是一次性使用。 如果您想要再使用它, 您应该再次调用 MyRange (...) 。 如果您需要使用结果两次, 将结果转换为列表, 并存储在变量 x = 列表( MyRange (5)) 中。 那些绝对需要克隆生成器的人( 例如, 那些正在做可怕的黑客化元程序设计的人) 可以使用它的工具.tee( 仍然在 Python 3 中工作) , 如果绝对需要的话, 因为可复制的迭代器 Python PEP 标准建议已被推迟 。

要理解它的产值函数,人们必须理解发电机是什么。此外,在理解发电机之前,你必须理解易用的东西。易用 : 易用 : 要创建列表, 您自然需要能够逐个读取每个元素。 逐项读取其项目的过程被称为迭代 :

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3 

My list 是可替换的。 当您使用列表理解值时, 您会创建一个列表, 因此该列表是可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4 

所有可用于... 的数据结构都是可循环的; 列表、 字符串、 文件...

这些惯用方法很方便,因为您可以随意阅读,但您可以将所有值存储在记忆中,当您有许多值时,这些值并不总是可取的。 生成器: 生成器 A 也是一种迭代器, 一种特殊的迭代器, 只能迭代一次。 生成器不会将所有值存储在记忆中, 而是在苍蝇上生成值 :

发电机:发电机、发电机、发电机发电,但不储存能源;)

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4 

只要使用 () 而不是 [] , 列表理解就会变成发电机理解。 但是, 由于发电机只能使用一次, 您无法在我的生成器中执行 i 第二次 : 生成器计算 0, 然后丢弃它, 然后计算 1, 最后一次计算 4 。 典型的黑色盲人打破玉米 。

产出关键字的使用方式与返回相同,但函数返回生成器。

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() 
>>> print(mygenerator) 
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4 

这个例子本身是毫无用处的,但是当您需要函数返回大量数值,而只需要读一次,使用产量就方便了。

要掌握收益率,需要清楚的是,当函数被调用时,函数正文中写入的代码将不会运行。函数只返回生成对象。启动者可能会对此感到困惑。

第二,明白代码会从每次使用发电机时留下的代码中继续使用。

现在最困难的部分是:

第一次调用您函数所创建的生成器对象时, 它会运行函数中的代码, 从开始一直运行到产生, 然后返回循环的第一个值。 然后, 以后的每次调用都会运行您在函数中写入的循环的下一个迭代, 并返回下一个值。 这将一直持续到生成器被视为空, 当函数运行时没有被击中时该生成。 这可能是因为循环已经结束, 或者因为您不再满足于“ if/ else ” 。

个人理解 我希望帮助你!

python 的输出与返回语句类似,但有些差异除外。如果要从函数返回多个值,返回语句将把所有值都作为列表返回,并将其存储在调用符块的内存中。但如果我们不想使用额外的内存,会怎样?相反,我们需要在需要时从函数中获取该值。这是产出的来源。考虑以下函数:

def fun():
   yield 1
   yield 2
   yield 3

打电话的人是:

def caller():
   print ('First value printing')
   print (fun())
   print ('Second value printing')
   print (fun())
   print ('Third value printing')
   print (fun())

上述代码段(调用函数),如果调用,产出:-

First value printing
1
Second value printing
2
Third value printing
3

从上文可以看出, 产出返回其调用器的值, 但当函数再次调用时, 它不会从第一个语句开始, 而是从产出后右侧的语句开始。 在上述示例中, “ 第一值打印” 打印, 函数被调用。 1 被回传并打印。 然后, 打印“ 第二值打印” , 并再次调用有趣 () 。 它不打印 1 (第一个语句) , 而是返回 2 , 也就是说, 仅从产出 1 之后的语句 。 同样的程序会进一步重复 。