Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

产出 :

可以通过停止函数从函数返回一个值的多次。 您可以从它中返回一个值, 如从中产生 。 当返回大数据时, 将它分成小部分数据, 以防止大量使用内存 。

例如,下面的测试 () 可以通过停止测试( ) 逐个返回“ 1 ” 、 “ 2 ” 和 [ “ 3 ” 、 “ 四 ” 。 因此, 测试( ) 总共返回3倍, 总共返回3倍, 停止测试( ) 共返回3倍 :

def test():
    yield 'One'                  # Stop, return 'One' and resume 
    yield 'Two'                  # Stop, return 'Two' and resume
    yield from ['Three', 'Four'] # Stop and return ['Three', 'Four'] 

下面这三套代码可以调用测试() 并打印“ 1 ” 、 “ 2 ” 、 “ 三 ” 和 “ 四 ” :

for x in test():
    print(x)
x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
x = test()
print(x.__next__())
print(x.__next__())
print(x.__next__())
print(x.__next__())

其结果是:

$ python yield_test.py
One
Two
Three
Four

此外,在利用回报和产出时,没有办法从回报中获得价值:

def test():
    yield 'One' 
    yield 'Two'
    yield from ['Three', 'Four']
    return 'Five' # 'Five' cannot be got

x = test()
print(next(x))
print(next(x))
print(next(x))
print(next(x))
print(next(x)) # Here

因此,在试图获取“ 五” 时, 下面有一个错误 :

$ python yield_test.py 
One
Two
Three
Four
Traceback (most recent call last):
  File "C:\Users\kai\yield_test.py", line 12, in <module>
    print(next(x))
          ^^^^^^^
StopIteration: Five

其他回答

在描述如何使用发电机的许多伟大答案中, 我感到还没有给出一种答案。 这是编程语言理论的答案:

Python 中的收益率语句返回了一个发电机。 Python 的发电机功能返回了连续性( 具体地说, 是一种共同的常规, 但连续性代表了了解情况的一般机制 ) 。

编程语言理论的继续是更根本的计算方法,但通常不会被使用,因为它们极难解释,也很难执行。但是,关于继续的理念很简单:是计算状态尚未完成。在这种状态下,变量的当前值、尚未执行的操作等等被保存。然后,在程序稍后的某个时候,可以援引继续,使程序的变量被重新设置到状态,保存的操作被执行。

以这种更一般的形式, 延续可以用两种方式执行 。 以调用/ cc 方式, 程序堆放的堆放被实际保存, 然后当继续使用时, 堆放被恢复 。

在继续传承风格(CPS)中,续编只是程序员明确管理和传到子例程的正常功能(仅在功能为头等语言的语文中),程序员明确管理和传到子例程。在这种风格中,程序状态代表关闭(和恰好在其中编码的变量),而不是堆叠中某处的变量。 管理控制流程的功能接受继续作为参数(在CPS的某些变异中,功能可能接受多重延续),并通过仅拨打这些函数来操纵控制流程,然后返回。一个非常简单的延续传承风格实例如下:

def save_file(filename):
  def write_file_continuation():
    write_stuff_to_file(filename)

  check_if_file_exists_and_user_wants_to_overwrite(write_file_continuation)

在此(非常简单化的)示例中,程序员将实际写入文件的操作保存为续存(这有可能是一个非常复杂的操作,有许多细节要写出来),然后将这一续存(即作为头等关闭)传递给另一个操作员,该操作员会做一些更多的处理,然后在必要时调用它。 (在实际的 GUI 编程中,我大量使用这种设计模式,要么是因为它可以节省我的代码线,要么更重要的是,在图形用户界面事件触发后管理控制流程。 )

这个职位的其余部分将不失为一般性,将连续性概念化为CPS, 因为它很容易理解和阅读。

现在让我们来谈谈Python 的发电机。 发电机是一种特定的子延续类型。 虽然继续一般能够保存计算状态( 即程序调用堆) , 但发电机只能保存循环器的循环状态 。 虽然这个定义对于发电机的某些使用案例来说有点误导 。 例如 :

def f():
  while True:
    yield 4

这显然是一个合理的可循环性,其行为是明确的 -- 每次发电机在发电机上转动时,它就会返回 4 (并永远这样做 ) 。但是,在考虑迭代器时,它可能并不是一种典型的可循环的类型(例如,收藏中的x:Do_hine(x) ) 。 这个例子说明了发电机的力量:如果有什么是迭代器,一个发电机可以保存其迭代状态。

需要重申: 继续可以保存程序堆叠的状态, 发电机可以保存循环状态 。 这意味着继续能力比发电机强大得多, 同时发电机也容易得多。 语言设计师更容易实施,程序设计员更容易使用( 如果您有时间燃烧, 试着读懂和理解关于继续和调用/ cc的页面 ) 。

但您可以很容易地实施(和概念化)发电机,作为延续传承风格的一个简单而具体的例子:

当调用产值时, 它会告诉函数返回一个延续。 当再次调用函数时, 它从它所剩的开始。 所以, 在伪假伪代码( 即不是伪代码, 但不是代码) 中, 生成器的下一个方法基本上如下 :

class Generator():
  def __init__(self,iterable,generatorfun):
    self.next_continuation = lambda:generatorfun(iterable)

  def next(self):
    value, next_continuation = self.next_continuation()
    self.next_continuation = next_continuation
    return value

当产出关键字实际上为实际生成功能的合成糖时, 基本上是类似 :

def generatorfun(iterable):
  if len(iterable) == 0:
    raise StopIteration
  else:
    return (iterable[0], lambda:generatorfun(iterable[1:]))

记住这只是假码,而Python发电机的实际安装则更为复杂。 但是,为了了解正在发生的事情,试图使用持续的传记风格来实施生成器,而不使用产出关键字。

总之,产出语句将您的函数转换成一个工厂,该工厂生产一个特殊对象,称为发电机,围绕您原始函数的正文包绕。当生成器被迭代时,它将执行您的函数,直到达到下一个输出时,然后中止执行,然后对传递到的数值进行评估。它重复了每次迭代的这一过程,直到执行路径退出函数。例如,

def simple_generator():
    yield 'one'
    yield 'two'
    yield 'three'

for i in simple_generator():
    print i

简单产出

one
two
three

电源来自使用循环计算序列的生成器, 生成器执行循环每次停止到“ ield ” 的下一个计算结果, 这样它就可以计算飞行上的列表, 好处是存储到特别大的计算中的内存

说你想创建一个自己的范围函数, 产生一个可循环的数字范围, 你可以这样做,

def myRangeNaive(i):
    n = 0
    range = []
    while n < i:
        range.append(n)
        n = n + 1
    return range

并像这样使用它;

for i in myRangeNaive(10):
    print i

但这效率低,因为

您创建了一个只使用一次的数组( 此废物内存) 。 此代码实际上会两次循环到该数组上 ! : () : ()

幸好吉多和他的团队 慷慨地开发了发电机 这样我们就可以这么做了

def myRangeSmart(i):
    n = 0
    while n < i:
       yield n
       n = n + 1
    return

for i in myRangeSmart(10):
    print i

在每次迭代中, 调用下一个发电机的函数执行该函数, 直至它到达“ ield” 语句停止和“ ields” 值, 或到达函数的终点。 在第一次调用的情况下, 下一个( ) 执行到产出语句, 并产生“ n ” , 下次调用它将执行递增语句, 跳回“ 此时” , 评估它, 如果是, 它会停止并再次产生“ n ” , 它会一直持续到状态返回错误, 发电机跳到函数结束的时候 。

- 功能 - 返回。

发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。

names = ['Sam', 'Sarah', 'Thomas', 'James']


# Using function
def greet(name) :
    return f'Hi, my name is {name}.'
    
for each_name in names:
    print(greet(each_name))

# Output:   
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.


# using generator
def greetings(names) :
    for each_name in names:
        yield f'Hi, my name is {each_name}.'
 
for greet_name in greetings(names):
    print (greet_name)

# Output:    
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.

发电机看起来像一个函数,但行为举止却像一个迭代器。

发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。

def function():
    yield 1 # return this first
    yield 2 # start continue from here (yield don't execute above code once executed)
    yield 3 # give this at last (yield don't execute above code once executed)

for processed_data in function(): 
    print(processed_data)
    
#Output:

>>>1
>>>2
>>>3

注:放弃不应在尝试中.最终建造。

(我下面的回答只是从使用Python发电机的角度,而不是从发电机机制的基本实施角度,后者涉及一些堆叠和堆积操纵的伎俩。 )

当在 python 函数中使用 quot 而不是返回时, 该函数将被转换为特殊的名称 。 此函数将返回生成器类型的对象 。 产量关键字是提醒 python 编译器专门处理此函数的旗帜 。 正常函数一旦从中返回某些值就会终止 。 但是, 在编译器的帮助下, 生成器的函数可以被视为可恢复 。 也就是说, 执行环境将会恢复, 执行会从上次运行时继续 。 直到您明确调回, 这会引起一个停止引力例外( 也是循环协议的一部分) , 或者到达函数的终点 。 我发现许多关于生成器的引用, 但从功能编程角度来说, 这是一种最可消化的引用 。

(现在我想谈谈产生者背后的理由, 以及基于我自己的理解的循环器。 我希望这能帮助你掌握循环器和生成者的基本动机。 这一概念以其他语言出现, 如 C# 。 )

据我所知,当我们想要处理一大批数据时,我们通常先在某处储存数据,然后逐个处理。但这种天真的方法有问题。如果数据量很大,那么事先将数据全部储存起来费用很高。因此,与其直接储存数据本身,不如间接储存某种元数据,即数据计算逻辑。

有两种方法可以包扎这类元数据。

OO 方法, 我们把元数据包成一个类。 这是执行循环协议( 即 __ next_ () 和 __ ter_ () 方法) 的所谓迭代器。 这也是常见的迭代器设计模式 。 功能方法, 我们将元数据包成函数 。 这是所谓的生成功能 。 但是在引擎盖下, 返回的生成对象仍然是 IS - A 迭代器, 因为它也执行循环程序 。

无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。

以下是基于收益率的简单方法, 用来计算Fibonacci系列, 解释如下:

def fib(limit=50):
    a, b = 0, 1
    for i in range(limit):
       yield b
       a, b = b, a+b

当你把这个输入你的REPL,然后尝试把它称为, 你会得到一个神秘的结果:

>>> fib()
<generator object fib at 0x7fa38394e3b8>

这是因为向 Python 发出的产出信号 表明您想要创建一个生成器, 即一个根据需求产生价值的物体。

那么,你如何生成这些值?这要么直接通过下一个使用内置函数来实现,要么间接地通过将内置函数输入一个消耗值的构造来实现。

使用下个() 内置函数, 您可以直接引用. extext/ __ extext_ , 迫使生成器产生值 :

>>> g = fib()
>>> next(g)
1
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
5

间接地,如果您为循环提供纤维、列表初始化器、图普特初始化器或其他任何期望产生/产生值的对象,您将“组装”生成器,直到它不再产生(并返回):

results = []
for i in fib(30):       # consumes fib
    results.append(i) 
# can also be accomplished with
results = list(fib(30)) # consumes fib

类似地,图普特首发器:

>>> tuple(fib(5))       # consumes fib
(1, 1, 2, 3, 5)

生成器与功能不同, 因为它很懒。 它通过保持本地状态, 并允许您在需要的时候恢复运行来达到这个目的 。

当你喊叫它的时候,

f = fib()

Python 编译函数, 遇到产出关键字, 只需返回生成对象。 似乎没有什么帮助 。

当您要求它生成第一个值时, 它会直接或间接地执行它发现的所有语句, 直到它遇到一个产量, 然后它会返回您提供的产量和暂停值。 对于一个更能证明这一点的例子, 让我们使用一些打印电话( 如果在 Python 2 上用打印“ text ” 代替 打印“ text ” ):

def yielder(value):
    """ This is an infinite generator. Only use next on it """ 
    while 1:
        print("I'm going to generate the value for you")
        print("Then I'll pause for a while")
        yield value
        print("Let's go through it again.")

现在,输入REPL:

>>> gen = yielder("Hello, yield!")

您现在有一个生成对象, 正在等待一个命令来生成一个值。 使用下一个对象并查看打印的内容 :

>>> next(gen) # runs until it finds a yield
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

未引用的结果是打印的内容。 引用的结果是从产出中返回的内容。 现在再次调用 :

>>> next(gen) # continues from yield and runs again
Let's go through it again.
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

生成器记得它被按产出值暂停, 然后从那里恢复。 下一则消息被打印, 并搜索收益声明以在它上再次暂停( 原因是同时循环 ) 。