Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。

import time

def get_gen():
    for i in range(10):
        yield i
        time.sleep(1)

def get_list():
    ret = []
    for i in range(10):
        ret.append(i)
        time.sleep(1)
    return ret


start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()

start_time = time.time()
print('get_list iteration (results come all at once)') 
for i in get_list():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')

get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds

get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds

其他回答

python 的输出与返回语句类似,但有些差异除外。如果要从函数返回多个值,返回语句将把所有值都作为列表返回,并将其存储在调用符块的内存中。但如果我们不想使用额外的内存,会怎样?相反,我们需要在需要时从函数中获取该值。这是产出的来源。考虑以下函数:

def fun():
   yield 1
   yield 2
   yield 3

打电话的人是:

def caller():
   print ('First value printing')
   print (fun())
   print ('Second value printing')
   print (fun())
   print ('Third value printing')
   print (fun())

上述代码段(调用函数),如果调用,产出:-

First value printing
1
Second value printing
2
Third value printing
3

从上文可以看出, 产出返回其调用器的值, 但当函数再次调用时, 它不会从第一个语句开始, 而是从产出后右侧的语句开始。 在上述示例中, “ 第一值打印” 打印, 函数被调用。 1 被回传并打印。 然后, 打印“ 第二值打印” , 并再次调用有趣 () 。 它不打印 1 (第一个语句) , 而是返回 2 , 也就是说, 仅从产出 1 之后的语句 。 同样的程序会进一步重复 。

这样想吧:

迭代器只是具有下一个( ) 方法的对象的奇特探测术语。 因此, 产生式的函数最终会变成这样 :

原文:

def some_function():
    for i in xrange(4):
        yield i

for i in some_function():
    print i

Python 翻译用上述代码所做的基本上就是:

class it:
    def __init__(self):
        # Start at -1 so that we get 0 when we add 1 below.
        self.count = -1

    # The __iter__ method will be called once by the 'for' loop.
    # The rest of the magic happens on the object returned by this method.
    # In this case it is the object itself.
    def __iter__(self):
        return self

    # The next method will be called repeatedly by the 'for' loop
    # until it raises StopIteration.
    def next(self):
        self.count += 1
        if self.count < 4:
            return self.count
        else:
            # A StopIteration exception is raised
            # to signal that the iterator is done.
            # This is caught implicitly by the 'for' loop.
            raise StopIteration

def some_func():
    return it()

for i in some_func():
    print i

为了更深入地了解幕后发生的事情,

iterator = some_func()
try:
    while 1:
        print iterator.next()
except StopIteration:
    pass

这更有意义还是更让人困惑?

我要指出,为了说明起见,这过于简单化。 )

理解产出的快捷键

当您看到带产出语句的函数时,应用这个简单易懂的把戏来理解会发生什么:

在函数开始处插入行结果 = []。 以结果替换每个输出。 附录( 扩展) 。 在函数底部插入一行返回结果 。 耶 - 不再生成语句! 读取并解析代码。 将函数与原始定义比较 。

这个骗局也许能让你了解函数背后的逻辑, 但实际的收益率与列表法中发生的情况大不相同。 在许多情况下, 收益率法会提高记忆效率和速度。 在其他情况下, 这个骗局会让你陷入一个无限的循环, 即使最初的功能运作良好。 阅读以学习更多...

不要弄乱你的循环器 循环器和发电机

首先,当您写作时的循环程序协议

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

为我的列表获取一个代号 : 调用 exer( mylist) - > 这返回一个具有下一个( ) 方法( 或 __ next__ () () 在 Python 3 中) 的对象 [这是大多数人忘记告诉你 使用传动器环绕项目的步骤 : 继续调用从第 1 步返回的代名器上的下一个( ) 方法 。 下一个( ) 的返回值被指定给 x , 循环体被执行 。 如果从下一个( ) 中提出例外 停止 , 这意味着在循环器中没有更多的值, 循环被退出 。

真相是 Python 执行上述两个步骤, 每当它想绕过对象的内容时, 都会执行上述两个步骤 - 所以它可以是环绕, 但它也可以像其它列表一样是代码 。 extendend( mylist) ( 其中其他列表是 Python 列表 ) 。

这里的我的列表是可替换的, 因为它执行的是循环协议 。 在用户定义的类别中, 您可以使用 ` iter__ () 方法使分类的循环性实例可以被使用。 此方法应该返回一个循环器。 循环器是一个带有下一个( ) 方法的对象。 在同一类中可以同时执行 _ iter__ () 和 下一个( ) , 并有 _ iter__ () 返回自我 。 这将对简单案例有效, 但当您想要两个循环器同时绕过同一个对象时则不行 。

这就是传动程序,许多物体执行这个程序:

内置列表、 词典、 图普尔、 集和文件。 执行 ` iter__ () 的用户定义的分类 。 发电机 。

注意“ 循环” 并不知道它所处理的物体是什么类型 - 它只是遵循了循环程序, 并且乐意在下一个( ) 调用时按项目逐项获得项目 。 内建列表逐项返回项目, 字典逐项返回关键词, 文件逐行返回行等 。 而发电机则返回... 也就是产出来源所在 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

而不是输出语句, 如果您在 f123 () 中有三个返回语句, 只有第一个将被执行, 而函数会退出 。 但是 f123 () 并不是普通函数 。 当调用 f123 () 时, 它不会返回产值语句中的任何值 。 它返回一个生成对象 。 另外, 该函数并不真正退出 - 它会进入一个中止状态 。 当循环尝试在生成对象上循环时, 函数会从先前返回的产值之后的下一行的中止状态恢复到下一行的状态, 执行下一行代码, 在此情况下, 产生语句, 并返回为下一个项目 。 这一直发生到函数退出, 此时, 生成器将启动暂停, 以及循环退出 。

因此,生成器对象有点像一个适配器 — — 在一端,它展示了迭代程序, 暴露了 `iter___ () 和下一个 () 方法来保持循环的快乐。 但是,在另一端, 它运行着功能, 足以将下一个值调出, 并把它放回中止模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但执行相同的逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 比如, 如果您有无限环, 或者当您有非常长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类别“ 某些东西 ” , 将国家保留在成员中, 并在下一个( ) ( 或 Python 3 ) 方法中执行下一个逻辑步骤 。 根据逻辑, 下一个( ) 方法中的代码可能最终会查找非常复杂和易被错误的代码 。 在这里, 生成器可以提供一个简单明了的解决方案 。

又一个TRL;DR

列表中的迭代器 : 下一个 () 返回列表的下一个元素 。

迭代生成器: 下一个 () 将计算苍蝇上的下一个元素( 执行代码)

您可以通过下拨“无论流量如何复杂”,将产出/生成器视为手动运行外部控制流的一种方式(如继续循环一步),然后调用该输出/生成器作为手动运行外部控制流的一种方式。

注意 : 生成器不是一个正常的函数。 它会像本地变量( stack) 一样记住先前的状态 。 请参看其他答案或文章以详细解释 。 生成器只能重复一次 。 您可以不生产, 但不会是那么好, 所以它可以被视为“ 非常好” 的语言糖 。

输出是函数的返回元素。 区别在于, 产出元素将函数转换成生成器。 生成器的行为就像一个函数, 直到某种“ 归属 ” 。 生成器停止直到下一次调用, 并且从与开始的完全相同的点继续。 您可以通过调用列表( 生成器 () ) 获得一个序列中所有“ 属性” 值的序列。