Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

输出是函数的返回元素。 区别在于, 产出元素将函数转换成生成器。 生成器的行为就像一个函数, 直到某种“ 归属 ” 。 生成器停止直到下一次调用, 并且从与开始的完全相同的点继续。 您可以通过调用列表( 生成器 () ) 获得一个序列中所有“ 属性” 值的序列。

其他回答

下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。

我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:

我打电话给你并告诉你,我想要一个以特定方式计算的数字序列,我告诉你算法是什么。 这个步骤对应着定义发电机的函数, 也就是包含一个产出的函数。 稍后我告诉你, “ 好, 准备好告诉我数字的序列 ” 。 这个步骤对应着调用发电机的函数, 返回一个发电机对象。 注意不要告诉我任何数字; 你只是拿起你的纸张和铅笔。 我问你, “ 请告诉我下一个数字 ” , 然后你告诉我第一个数字; 之后, 你等着我问你下一个数字。 这是你的任务, 也就是确定你所在的位置, 你已经说过的数字, 下一个数字是什么。 我不在乎细节。 这个步骤相当于在发电机对象上调用下一个( 发电机) 号码的方法。 ( Python 2, next) 注意, 这是一个发电机对象的方法; 在 Python 3, 它被命名为...

这是生成器所做的( 包含一个产值的函数 ) ; 它开始在第一个( ) 上执行, 当它做一个产值时暂停, 当要求下一个( ) 值时, 它会从最后一点继续 。 它的设计完全符合 Python 的循环协议, 协议描述如何按顺序要求值 。

迭代协议最著名的用户是 Python 的命令用户。 所以, 当你做 :

for item in sequence:

序列是否是一个列表、字符串、字典或上述生成对象并不重要;结果是一样的:您逐个阅读序列中的项目。

请注意,定义含有产出关键字的函数不是创建生成器的唯一方法;它只是创建生成器的最简单的方法。

欲知更准确的信息,请阅读Python文件中的迭代机类型、产量说明和发电机。

对于那些更喜欢最低限度工作实例的人来说,考虑一下这次交互式的Python会议:

>>> def f():
...   yield 1
...   yield 2
...   yield 3
... 
>>> g = f()
>>> for i in g:
...   print(i)
... 
1
2
3
>>> for i in g:
...   print(i)
... 
>>> # Note that this time nothing was printed

- 功能 - 返回。

发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。

names = ['Sam', 'Sarah', 'Thomas', 'James']


# Using function
def greet(name) :
    return f'Hi, my name is {name}.'
    
for each_name in names:
    print(greet(each_name))

# Output:   
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.


# using generator
def greetings(names) :
    for each_name in names:
        yield f'Hi, my name is {each_name}.'
 
for greet_name in greetings(names):
    print (greet_name)

# Output:    
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.

发电机看起来像一个函数,但行为举止却像一个迭代器。

发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。

def function():
    yield 1 # return this first
    yield 2 # start continue from here (yield don't execute above code once executed)
    yield 3 # give this at last (yield don't execute above code once executed)

for processed_data in function(): 
    print(processed_data)
    
#Output:

>>>1
>>>2
>>>3

注:放弃不应在尝试中.最终建造。

想象一下, 你创造了一个非凡的机器, 能够每天生成成千上万个灯泡。 机器用一个独特的序列号的盒子生成这些灯泡。 您没有足够的空间同时存储所有这些灯泡, 所以您想要调整它来生成点燃灯泡 。

Python 生成器与这个概念没有多大区别。 想象一下, 您有一个叫做条形码_ 生成器的函数, 可以为框生成独特的序列号 。 显然, 您可以在硬件( RAM) 的限制下, 由函数返回大量这样的条形码 。 一个更明智和空间效率更高的选项是按需生成这些序列号 。

机器代码 :

def barcode_generator():
    serial_number = 10000  # Initial barcode
    while True:
        yield serial_number
        serial_number += 1


barcode = barcode_generator()
while True:
    number_of_lightbulbs_to_generate = int(input("How many lightbulbs to generate? "))
    barcodes = [next(barcode) for _ in range(number_of_lightbulbs_to_generate)]
    print(barcodes)

    # function_to_create_the_next_batch_of_lightbulbs(barcodes)

    produce_more = input("Produce more? [Y/n]: ")
    if produce_more == "n":
        break

注意下个( 条码) 位 。

如你所见, 我们有一个自足的“ 功能” , 每次生成下一个独特的序列号。 此函数返回一个生成器 。 正如您所看到的, 我们并不是每次我们需要一个新的序列号时都会调用该功能, 而是使用下一个( ) , 给生成器来获取下一个序列号 。

低拉隔热器

更精确地说, 这个生成器是一个懒惰的循环器 。 循环器是一个帮助我们绕过一个天体序列的物体。 它被称为懒惰, 因为它在需要之前不会在内存中装入序列中的所有项目。 上一个示例中的下一个是从循环器获取下一个项目的清晰方式 。 隐含方式用于循环 :

for barcode in barcode_generator():
    print(barcode)

这将无穷尽地打印条形码, 但你不会失去内存 。

换句话说,一个发电机看起来像一个函数,但行为却像一个迭代器。

现实世界应用?

最后, 真实世界应用程序 。 当您在大序列中工作时, 它们通常是有用的 。 想象一下从有数十亿记录的磁盘上读取一个巨大的文件。 在您能够处理其内容之前, 在记忆中读取整个文件, 很可能是行不通的( 也就是说, 您将失去记忆 ) 。

用于创建生成器 。 将生成器想象成一个迭代器 highc , 给您每个迭代值 。 当您在循环中使用 收益率 时, 就会得到一个生成器对象, 您可以用该对象从循环中以迭接方式从循环中获取项目 。