Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

输出是函数的返回元素。 区别在于, 产出元素将函数转换成生成器。 生成器的行为就像一个函数, 直到某种“ 归属 ” 。 生成器停止直到下一次调用, 并且从与开始的完全相同的点继续。 您可以通过调用列表( 生成器 () ) 获得一个序列中所有“ 属性” 值的序列。

其他回答

产出关键字简化为两个简单的事实:

如果编译者在函数内的任何地方检测到产出关键字,则该关键字函数不再通过返回语句返回。相反,它会立即返回一个称为生成器的懒惰的“待决列表”对象。“生成器”是可循环的。什么是可循环的?它像列表或设置或范围或编辑视图一样,带有按一定顺序访问每个元素的内置协议。

简言之: 最常见的情况是, 发电机是一个懒惰的、 递增的等待列表, 并且产出语句允许您使用函数符号来编程生成器应该逐渐吐出的列表值。 此外, 高级用法允许您使用发电机作为共程( 见下文 ) 。

generator = myYieldingFunction(...)  # basically a list (but lazy)
x = list(generator)  # evaluate every element into a list

   generator
       v
[x[0], ..., ???]

         generator
             v
[x[0], x[1], ..., ???]

               generator
                   v
[x[0], x[1], x[2], ..., ???]

                       StopIteration exception
[x[0], x[1], x[2]]     done

基本上, 只要遇到产出语句, 函数就会暂停并保存状态, 然后根据 Python 传动协议( 在某些合成结构中, 类似反复呼叫下一个( ) 的循环, 并捕捉一个停止作用的例外等) , 发出“ 列表中的下一个返回值 ” 。 您可能遇到过带有生成表达式的生成器; 生成函数更强大, 因为您可以将参数反馈到暂停的生成器功能中, 使用它们来实施 comutines 。 稍后会更多 。


基本示例(“清单”)

我们来定义一个函数,它就像 Python 的射程。 调用 makeRange(n) returns a Generator:

def makeRange(n):
    # return 0,1,2,...,n-1
    i = 0
    while i < n:
        yield i
        i += 1

>>> makeRange(5)
<generator object makeRange at 0x19e4aa0>

要强制生成器立即返回其未完成的值, 您可以将它传送到列表 () (就像您可以任意使用 ) :

>>> list(makeRange(5))
[0, 1, 2, 3, 4]

比较“仅返回列表”的示例

上述例子可视为仅仅是创建一份清单,并附在后面并返回:

# return a list                  #  # return a generator
def makeRange(n):                #  def makeRange(n):
    """return [0,1,2,...,n-1]""" #      """return 0,1,2,...,n-1"""
    TO_RETURN = []               # 
    i = 0                        #      i = 0
    while i < n:                 #      while i < n:
        TO_RETURN += [i]         #          yield i
        i += 1                   #          i += 1
    return TO_RETURN             # 

>>> makeRange(5)
[0, 1, 2, 3, 4]

不过,有一个重大差别;见最后一节。


您如何使用发电机

所有发电机都是易变的, 所以它们经常被这样使用:

#                  < ITERABLE >
>>> [x+10 for x in makeRange(5)]
[10, 11, 12, 13, 14]

要对发电机有更好的感觉,您可以玩过工具模块( 一定要使用链。 来自_ irightable, 而不是当必要时使用链子 ) 。 例如, 您甚至可以使用生成器来实施无限长的懒惰列表, 比如 ltertools. counts () 。 您可以执行您自己的除法列表( 可认证的) : zip( 计数 ) , 或使用一段时间内生成关键字来这样做 。

请注意: 发电机实际上可以用于更多的事情, 比如实施 comotines 或非 确定性编程或其他优雅的东西。 然而, 我在此介绍的“ 懒惰列表” 观点是您最常用的 。


幕后幕后

这就是“ Python 迭代协议” 的原理。 也就是说, 当您做列表( makeRange(5)) 时会发生什么 。 这就是我前面描述的“ 懒惰、 递增列表 ” 。

>>> x=iter(range(5))
>>> next(x)  # calls x.__next__(); x.next() is deprecated
0
>>> next(x)
1
>>> next(x)
2
>>> next(x)
3
>>> next(x)
4
>>> next(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

内建函数的下一个 () 只是调用对象 ._next__ () 函数, 这是“ 电路协议” 的一部分, 并在所有迭代器中找到 。 您可以手动使用下一个( ) 函数( 和迭代协议的其他部分) 来执行奇特的东西, 通常以降低可读性为代价, 所以尽量避免这样做...


锥体

圆柱形示例:

def interactiveProcedure():
    userResponse = yield makeQuestionWebpage()
    print('user response:', userResponse)
    yield 'success'

coroutine = interactiveProcedure()
webFormData = next(coroutine)  # same as .send(None)
userResponse = serveWebForm(webFormData)

# ...at some point later on web form submit...

successStatus = coroutine.send(userResponse)

comotine (generations 通常接受通过 产出 关键字输入输入 , 例如, 下一个 Input = 产生下一个输出, 作为一种双向通信形式) 基本上是允许暂停自己和请求输入的计算( 例如它下一步应该做什么 ) 。 当 comotine 暂停自己( 当运行中的 comotine 最终会点击 产出 关键字时) , 计算会暂停, 控制会被倒回“ 调” 函数( 要求下一个计算值的框架 ) 。 暂停的发电机/ 库外 仍然暂停, 直到另一个函数( 可能是一个不同的函数/ 文本) 启用后, 请求下一个值( 通常通过输入数据将暂停的逻辑内部输入到 comutine 的代码 ) 。

您可以将皮延共程视为懒惰的递增待决列表, 下一个元素不仅取决于先前的计算, 而且还取决于输入, 您可以选择在生成过程中注射 。


贫提亚e

通常,大多数人不会关心以下的区别,可能想在这里停止阅读。

在 Python-speak 中, 迭代是“ 理解“ 循环概念” 的任何物体, 如列表[ 1, 2, 3] , 转动器是请求循环的具体实例, 如 [ 1, 2, 3,. . _ eter __ () 。 生成器与任何迭代器完全相同, 但它的写法除外( 带有函数语法 ) 。

当您从列表中请求一个迭代器时, 它会创建一个新的迭代器。 但是, 当您从一个迭代器中请求一个迭代器( 您很少会这样做 ) 时, 它只会给您一个副本 。

因此,在不可能的情况下,你没有 做这样的事情...

> x = myRange(5)
> list(x)
[0, 1, 2, 3, 4]
> list(x)
[]

... 然后记住发电机是一个迭代器, 也就是说, 它是一次性使用。 如果您想要再使用它, 您应该再次调用 MyRange (...) 。 如果您需要使用结果两次, 将结果转换为列表, 并存储在变量 x = 列表( MyRange (5)) 中。 那些绝对需要克隆生成器的人( 例如, 那些正在做可怕的黑客化元程序设计的人) 可以使用它的工具.tee( 仍然在 Python 3 中工作) , 如果绝对需要的话, 因为可复制的迭代器 Python PEP 标准建议已被推迟 。

在描述如何使用发电机的许多伟大答案中, 我感到还没有给出一种答案。 这是编程语言理论的答案:

Python 中的收益率语句返回了一个发电机。 Python 的发电机功能返回了连续性( 具体地说, 是一种共同的常规, 但连续性代表了了解情况的一般机制 ) 。

编程语言理论的继续是更根本的计算方法,但通常不会被使用,因为它们极难解释,也很难执行。但是,关于继续的理念很简单:是计算状态尚未完成。在这种状态下,变量的当前值、尚未执行的操作等等被保存。然后,在程序稍后的某个时候,可以援引继续,使程序的变量被重新设置到状态,保存的操作被执行。

以这种更一般的形式, 延续可以用两种方式执行 。 以调用/ cc 方式, 程序堆放的堆放被实际保存, 然后当继续使用时, 堆放被恢复 。

在继续传承风格(CPS)中,续编只是程序员明确管理和传到子例程的正常功能(仅在功能为头等语言的语文中),程序员明确管理和传到子例程。在这种风格中,程序状态代表关闭(和恰好在其中编码的变量),而不是堆叠中某处的变量。 管理控制流程的功能接受继续作为参数(在CPS的某些变异中,功能可能接受多重延续),并通过仅拨打这些函数来操纵控制流程,然后返回。一个非常简单的延续传承风格实例如下:

def save_file(filename):
  def write_file_continuation():
    write_stuff_to_file(filename)

  check_if_file_exists_and_user_wants_to_overwrite(write_file_continuation)

在此(非常简单化的)示例中,程序员将实际写入文件的操作保存为续存(这有可能是一个非常复杂的操作,有许多细节要写出来),然后将这一续存(即作为头等关闭)传递给另一个操作员,该操作员会做一些更多的处理,然后在必要时调用它。 (在实际的 GUI 编程中,我大量使用这种设计模式,要么是因为它可以节省我的代码线,要么更重要的是,在图形用户界面事件触发后管理控制流程。 )

这个职位的其余部分将不失为一般性,将连续性概念化为CPS, 因为它很容易理解和阅读。

现在让我们来谈谈Python 的发电机。 发电机是一种特定的子延续类型。 虽然继续一般能够保存计算状态( 即程序调用堆) , 但发电机只能保存循环器的循环状态 。 虽然这个定义对于发电机的某些使用案例来说有点误导 。 例如 :

def f():
  while True:
    yield 4

这显然是一个合理的可循环性,其行为是明确的 -- 每次发电机在发电机上转动时,它就会返回 4 (并永远这样做 ) 。但是,在考虑迭代器时,它可能并不是一种典型的可循环的类型(例如,收藏中的x:Do_hine(x) ) 。 这个例子说明了发电机的力量:如果有什么是迭代器,一个发电机可以保存其迭代状态。

需要重申: 继续可以保存程序堆叠的状态, 发电机可以保存循环状态 。 这意味着继续能力比发电机强大得多, 同时发电机也容易得多。 语言设计师更容易实施,程序设计员更容易使用( 如果您有时间燃烧, 试着读懂和理解关于继续和调用/ cc的页面 ) 。

但您可以很容易地实施(和概念化)发电机,作为延续传承风格的一个简单而具体的例子:

当调用产值时, 它会告诉函数返回一个延续。 当再次调用函数时, 它从它所剩的开始。 所以, 在伪假伪代码( 即不是伪代码, 但不是代码) 中, 生成器的下一个方法基本上如下 :

class Generator():
  def __init__(self,iterable,generatorfun):
    self.next_continuation = lambda:generatorfun(iterable)

  def next(self):
    value, next_continuation = self.next_continuation()
    self.next_continuation = next_continuation
    return value

当产出关键字实际上为实际生成功能的合成糖时, 基本上是类似 :

def generatorfun(iterable):
  if len(iterable) == 0:
    raise StopIteration
  else:
    return (iterable[0], lambda:generatorfun(iterable[1:]))

记住这只是假码,而Python发电机的实际安装则更为复杂。 但是,为了了解正在发生的事情,试图使用持续的传记风格来实施生成器,而不使用产出关键字。

Python 的输出关键字是做什么的 ?

答复大纲/摘要

函数, 调用时, 返回生成器。 发电机是循环器, 因为它们执行循环程序, 以便您可以对它进行循环。 也可以发送一个发电机信息, 使其在概念上成为共同的常规。 在 Python 3 中, 您可以将一个发电机从一个发电机到另一个发电机, 从两个方向调用。 (附录: 包括顶部的答案在内的几个答案, 并讨论在发电机中使用返回的方法 。)

发电机:

收益率只是功能定义中的法律内涵,而将收益率列入功能定义使其返回产生者。

发电机的想法来自其他语言(见脚注1),其实施方式各有不同。 在Python的发电机中,代码的执行在生产点被冻结。当发电机被调用(方法在下文讨论)时,再恢复执行,然后冻结在下一个生产点。

输出提供了执行循环协议的简单方法,由以下两种方法定义:__iter__和__ext_。这两种方法都使对象成为可与收藏模块的Exerator摘要基础类进行打印的复制器。

def func():
    yield 'I am'
    yield 'a generator!'

让我们进行一些反省:

>>> type(func)                 # A function with yield is still a function
<type 'function'>
>>> gen = func()
>>> type(gen)                  # but it returns a generator
<type 'generator'>
>>> hasattr(gen, '__iter__')   # that's an iterable
True
>>> hasattr(gen, '__next__')   # and with .__next__
True                           # implements the iterator protocol.

生成器类型是一个子迭代器类型 :

from types import GeneratorType
from collections.abc import Iterator

>>> issubclass(GeneratorType, Iterator)
True

如有必要,我们可以这样打字检查:

>>> isinstance(gen, GeneratorType)
True
>>> isinstance(gen, Iterator)
True

迭代器的一个特征是,一旦耗竭,您无法再利用或重置它:

>>> list(gen)
['I am', 'a generator!']
>>> list(gen)
[]

如果你想再次使用其功能,你必须再做一次(见脚注2):

>>> list(func())
['I am', 'a generator!']

可以按方案生成数据,例如:

def func(an_iterable):
    for item in an_iterable:
        yield item

上述简单生成器也相当于以下生成器 -- -- 由于Python 3.3, 您可以使用以下来源的产量:

def func(an_iterable):
    yield from an_iterable

但是,也允许向次级发电机授权,这一点将在下一节 " 与次级水泥合作授权 " 中加以解释。

计票:

窗体中显示一个表达式,该表达式允许将数据发送到生成器(见脚注3)

以下是一个例子,请注意收到的变量,该变量将指向发送到生成方的数据:

def bank_account(deposited, interest_rate):
    while True:
        calculated_interest = interest_rate * deposited 
        received = yield calculated_interest
        if received:
            deposited += received


>>> my_account = bank_account(1000, .05)

首先, 我们必须排队, 下一个是内建函数 。 它会调用合适的下一个或 下一步方法, 取决于您使用的 Python 版本 :

>>> first_year_interest = next(my_account)
>>> first_year_interest
50.0

现在我们可以将数据发送到生成器。 (“终结者”和“下一个”是一样的 ) :

>>> next_year_interest = my_account.send(first_year_interest + 1000)
>>> next_year_interest
102.5

合作社代表团到分科诊所分科

现在,请记住,Python 3的产量是可以得到的。 这使得我们可以将共同路线 委托给一个子烹饪:


def money_manager(expected_rate):
    # must receive deposited value from .send():
    under_management = yield                   # yield None to start.
    while True:
        try:
            additional_investment = yield expected_rate * under_management 
            if additional_investment:
                under_management += additional_investment
        except GeneratorExit:
            '''TODO: write function to send unclaimed funds to state'''
            raise
        finally:
            '''TODO: write function to mail tax info to client'''
        

def investment_account(deposited, manager):
    '''very simple model of an investment account that delegates to a manager'''
    # must queue up manager:
    next(manager)      # <- same as manager.send(None)
    # This is where we send the initial deposit to the manager:
    manager.send(deposited)
    try:
        yield from manager
    except GeneratorExit:
        return manager.close()  # delegate?

现在我们可以将功能委托给一个子生成器 并且它可以被一个发电机使用 就像上面那样:

my_manager = money_manager(.06)
my_account = investment_account(1000, my_manager)
first_year_return = next(my_account) # -> 60.0

现在模拟在账户中再增加1000, 加上账户的回报( 60.0 ) :

next_year_return = my_account.send(first_year_return + 1000)
next_year_return # 123.6

从PEP 380中,您可以阅读更多关于产量的确切语义。

其他方法:关闭和投掷

关闭方法在功能执行被冻结时提升发电机输出。 也可以被 __ del__ 调用, 这样您就可以设置任何清理代码, 用于处理发电机输出 :

my_account.close()

您也可以丢弃一个例外,该例外可在生成器中处理,或向用户传播:

import sys
try:
    raise ValueError
except:
    my_manager.throw(*sys.exc_info())

提高:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
  File "<stdin>", line 6, in money_manager
  File "<stdin>", line 2, in <module>
ValueError

结论 结论 结论 结论 结论

我认为,我已处理了下列问题的所有方面:

Python 的输出关键字是做什么的 ?

事实证明,产量是很大的。我相信我可以为此再增加更详尽的例子。如果你需要更多的或有建设性的批评,请在下面评论,让我知道。


附录:

顶级/接受的答复的优先程度**

使用列表作为示例。 参见我上面的引用, 但概括地说: 循环含有 ` irit_ 的方法返回一个迭代器。 一个迭代器另外提供了一种 . next_ 的方法, 以循环为暗号, 以循环为代号, 直到它升起 停止 试运行, 一旦它确实升起 停止 试运行, 它会继续这样做 。 然后它会使用一个发电机表达方式来描述一个发电机。 由于一个发电机表达方式只是创建一个代用器的方便方式, 它只会混淆物质, 而我们还没有到达产值部分 。 在控制发电机耗竭时, 他调用 . next 方法( 只在 Python 2 中有效 ) , 而不是使用 内建函数, 下一步。 调用下一个 (obj) 将是一个适当的间接层, 因为他的代码在 Python 3. Itertools 中不起作用 。 这与结果完全无关 。 没有讨论 与 Python 3 中产生新功能收益的方法提供的方法和 Python 。

上方/接受的回答是一个非常不完整的回答。

回答的精度表示在发电机的表达或理解中产生产量。

语法目前允许列表理解中的任何表达式 。

expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |
                     ('=' (yield_expr|testlist_star_expr))*)
...
yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist

由于产量是一种表达方式,有些人认为在理解或生成方表达方式中使用产量是令人感兴趣的,尽管没有提出特别好的使用方式。

CPython核心开发商正在讨论其备抵的折旧问题。

2017年1月30日19:05时,布雷特坎农写道:在太阳上,2017年1月29日,16:39克雷格·罗德里格斯写道:我同意这两种方法。把事情保留在Python 3的状态是不对的,IMHO。我的投票是语法错误,因为你没有得到你期望的语法。我同意这对我们来说是一个明智的结局,因为任何依赖当前行为的代码都非常聪明,无法维持。在到达那里时,我们可能想要:在2.7的Py3k警告中,用3.7的Py3k警告来表示警告或破坏警告。x语法错误,Nick。 -- Nick Coghlan ncoghlan at gmail.com {Brisbane,澳大利亚,Gmail. com {Brisbane。

此外,还有一个未决问题(10544)似乎指向从来就不是一个好主意(PyPy, PyPy, 写在Python的Python执行文件,

底线,直到CPython的开发者告诉我们别的情况: 不要在生成器表达或理解中放出产量。

发电机中的回程声明

在Python 3 中:

在发电机函数中, 返回语句表示发电机已完成, 并将导致 StopLiveration 上升。 返回的值( 如果有的话) 用作构建 StopLiveration 的参数, 并成为 StopIturation. value 属性 。

Python 2 中的历史注释 : “ 在生成器函数中, 返回语句不允许包含表达式_ 列表 。 在此情况下, 光返回表示生成器已经完成, 并将导致停止使用 。 ” 表达式列表基本上是用逗号分隔的任何多个表达式 - 基本上在 Python 2 中, 您可以返回停止生成器, 但无法返回一个值 。

脚注脚注

将生成器的概念引入 Python 的建议中引用了语言 CLU、 Sather 和 图标 。 一般的想法是, 函数可以维持内部状态, 并产生用户需要的中间数据点 。 这承诺在性能上优于其他方法, 包括Python 线性线性, 某些系统中甚至没有这种系统。 这意味着, 范围天体虽然是可循环的, 但却不是迭代器, 因为它们是可以再利用的 。 和列表一样, 它们的 ` eter_ 方法返回替换器对象 。 收益最初是作为声明引入的, 意思是它只能在代码块的线性起始处出现 。 现在, 收益产生一种收益表达方式 。 https://docs. python.org/2/reference/spoint_stmts.html# grammar- token- yeld_stmt 。 提出这一修改是为了让用户将数据发送到生成器中。 。 要发送数据, 发送数据时, 就必须将它指定它为某种东西, 。

和每个答案一样, 收益被用于创建序列生成器。 它用于动态生成某些序列。 例如, 在按行阅读网络文件行时, 您可以使用以下的收益函数 :

def getNextLines():
   while con.isOpen():
       yield con.read()

您可在您的代码中使用以下代码:

for line in getNextLines():
    doSomeThing(line)

执行控制控制

执行控制将会从 GetNextLines () 转到执行时的循环。 因此, 每次引用 NextLines () 时, 执行都会从上次暂停处开始 。

因此,简言之,一个函数具有以下代码

def simpleYield():
    yield "first time"
    yield "second time"
    yield "third time"
    yield "Now some useful value {}".format(12)

for i in simpleYield():
    print i

将打印

"first time"
"second time"
"third time"
"Now some useful value 12"

关键要点

Python 的语法库使用输出关键字的存在来设定返回生成器的函数。 生成器是一种迭代器, 这是一种在 Python 中循环的主要方式。 生成器本质上是一个可回收的函数。 与返回返回值和结束函数不同的是, 生成关键字返回一个值和中止函数。 当下一个( g) 被调用到生成器时, 函数会恢复它所剩的功能。 只有当函数遇到一个明示或暗示返回时, 它才会实际结束 。

书写和理解发电机技术

一个理解和思考发电机的简单方法就是用印刷品()而不是产量来撰写一个常规函数:

def f(n):
    for x in range(n):
        print(x)
        print(x * 10)

注意它的产出:

>>> f(3)
0
0
1
10
2
2

3⁄4 ̄ ̧漯B

def f(n):
    for x in range(n):
        yield x
        yield x * 10

给 :

>>> list(f(3))
[0, 0, 1, 10, 2, 20]

迭代程序协议

答案“什么产量能做什么”可以是简短和简单的, 但是它是更大的世界的一部分, 所谓的“标准协议”。

在迭代协议的发送方,有两种相关的对象。可循环的物体是您可以绕过的东西。迭代器是跟踪环状状态的物体。

在迭代协议的消费方方面,我们调用可迭代对象的迭代者获得一个迭代者。然后我们调用下一个迭代者从迭代器中获取值。当没有更多数据时,会提出一个停止使用例外 :

>>> s = [10, 20, 30]    # The list is the "iterable"
>>> it = iter(s)        # This is the "iterator"
>>> next(it)            # Gets values out of an iterator
10
>>> next(it)
20
>>> next(it)
30
>>> next(it)
Traceback (most recent call last):
 ...
StopIteration

为了让这一切变得更容易, 对于卢布人来说,叫它, 下一个代表我们:

>>> for x in s:
...     print(x)
...   
10
20
30

一个人可以写一本关于这一切的书, 但这些都是关键点。 当我教授 Python 课程时, 我发现这是一个最起码的足够解释 来建立理解, 并马上开始使用它。 特别是, 用打印写一个函数, 测试它, 然后转换成收益的技巧, 似乎对 Python 各级程序员都有效 。